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\ 1. General Considerations 7

The problem of an elastic cracked medium under condi-
tions of plane stress or plane strain has not been tfeai:ed
up to now in its general form althoudgh the problems of a
finite or infinite, simple or composite, simply - connected
or multiply-connected medium without cracks have been fully
solved. It is the aim of this book to give general and ef-
fective methods for the solution of any plane problem of a
medium with one or more cracks or sets of cracks. .

The solution of such a problem involves the development
and solution of the necessary equations. As regards the
development of equations, the classical method of complex
potentials @(2z) and ¢(z), or ®(2) and ¥(2), which has already
proved quite éffective in solving plane elasticity problems,
is used throughout. Integral representations of these po-
tentials are proposed for crack problems in the form of Cau-
chy-type integrals. Thus the whole problem is to find the
unknown densities of these potentials, which for most cases
can be interpreted as densities of concentrated forces or
dislocation arrays or combinations of them acting on the
boundaries of the medium and especially on the cracks. Both
the first and the second fundamental problems of the Theo-
rv of Plane Elasticity as well as the mixed fundamental
problem are considered. Of course, emphasis is put on the
solution of the first fundamental problem, which applies to
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the usual case of unloaded cracks in a loaded along its oth-
er boundaries medium too. By using the Plemelj formulae,
the whole problem is reduced in all cases to the solution
of one or more Cauchy-type singular integral equations a-
long all boundaries of the medium (the cracks included) .
These ecquations are accompanied by the condition or condi-
tions of single-valuedness of displacements, whichmust al-
ways be taken into consideration around each crack or hole
inside the medium.

As regards nowv the solution of the resulting ecuations,
this consists basically of the numerical solution ~of the
Cauchy-type singular integral equations to which a plane
crack problem can be reduced, as mentioned above. For the
numerical solution of such equations, which have been up to
now a problem for all people having to do with them, aquite
effective method is introduced which consists in the reduc-
tion of these ecuations into linear systems by applving the
well-known numerical qﬁadfature procedures to the Cauchy-
tvpe singular integrals. It may be noticed that the use of
the methods of numerical integration’ for Cauchy-type integ-
rals is allowable only when the points of application of
the singular integral eguations, in which these  intégrals
occur, are determined as roots of trancsendental equations
associated with the numerical cuadrature procedure in use.
In this way, a Cauchy-type singular integral eguation can
be thought, as to its numerical solution, almost ecual in
difficulty to a normal integral equation with regular
kernels. This method for the numerical solution of singu-
lar integral ecquations can be ecually well applied to the
solution of such ecuations ocurring not only in the theory
of Plane Elasticity, but also in a lot of branches of Math-
ematical Physics. ‘ .
Applications of- the above-described method of solution

of crack problems are given to a number of cases, most of
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which have been already solved by other methods, in order
that .a comparison with the method proposed in this book is
possible. It can be seen that for the first time the wval-
ues of the stress intensity factors at the tips of the cracks
are found directly from the solution of the singular integ-
ral equations without the need of using the methods of ex-
trapolation orrdf infinite sums. )

The development of general computer programs for the
solution of any crack problem that might occur in a possi-
ble application and the tabulation of the pdints of appli-
cation of a Cauchy-type singular integral equation are be-
yond the scope of this book but, it is hoped, will be treated
in future works. It is thought that the above-mentioned
points could be a complement to the already existing tables
of abscissas and weights of the numerical integration meth-
ods.

2. Abstracts

The whole book is divided into four chapters, each of
which is further subdivided into nine to ten sections. Be-
cause of the fact that different problems are solved in
these sections, short abstracts of all sections of the book
are given below, which, we believe, will prove useful to a
reader wishing to study only some problems among those treated
in this book.

It must also be noticed that, when speaking about sin-
gular integrals and singular integral equations, we mean
Cauchy~-type singular integrals and singular integral equa-
tions with Cauchy-type kernels respectively, and also that
the terms Gaussian quadrature method, Radau quadrature meth-
od and Lobatto quadrature method are used to denote the
Gauss~type quadrature method with all its abscissas inside
the integration interval, with one of its abscissas coin-

ciding with one of the ends of the integration interval and
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with two of its abscissas coinciding with both ends of the

integration interval respectively.

CHAPTER A’': The problem of the simple smooth crack in an
infinite medium

In this chapter the problem of the simple smooth crack
in an infinite isotropic or anisotropic meditm is consider-
ed. For the case of an isotropic medium, the first funda-
mental, the second fundamental and the mixed fundamental
problem are studied, while for the case of an anisotropic
medium only the first fundamental problem is examined. Sev-
eral methods of solution for the first fundamental problem
are proposed as it is. the mést‘important. Throughout the
chapter the method of complex potentials is used and the
problems considered are reduced to complex singular integ-
rai equations along the crack together with a condition of
single-valuedness of displacements.

A1. General method of solution of the problem of the
simple smooth crack in an infinite isotropic medium : The
first fundamental problem for an infinite medium containing a simple
smooth crack is reduced to a complex singular integrél equation along
the crack and a condition of single-valuedness of displacements , by
using the method of complex potentials ¢(z) and ¥(z) together with the
Plemelj formulae. The unknown function in the singular integral equa-.
tion, which is the density of a Cauchy-type integral representing the
function &(z), can be related to the densities of concentrated forces
and dislocations along the crack. These densities could be called the
concentrated forces function and the dislocation function respectively.
Reduction of the complex singular integral equation to two real singu-
lar integral equations and application to the problem of a straight
crack are also given. )

A2. Another method of solution of the problem of “the
simnle smooth crack in an infinite'isotropic medium{: The

same technique described in section Al is used to reduce thefirst fun-
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damental problem for a simple smooth crack in an infinite isotropic me-
dium to a complex singular integral equation together with the condi-
) tion of single-valuedness of displacements. The only difference con-
sists in a different expression of the complex function &(z) through
a Cauchy-type int'egr‘*al. Two other Fredholm-type integral equations e-
quivalent to the singular integral equations of section Al and the pres-
ent section are also derived, but their form is rather complicated.

A3. Solution of the nroblem of the simple smooth crack
in an infinite isotropic medium by determination of complex
potentials cpo(z) and b (z) : One more method for the solution of
the first fundamental problem for a simple smooth crack.in an infinite
isotropic medium can be derived by using the complex potentials gn(2)
and ¢,(z) instead of 9(z) and ¥(z) used in section Al. Thecomplex sin-
gular integral equation {hus derived is proved to .be equivalent to
that found in. section Al. y

A4. Solution of the problem of the simple smooth crack
in an infinite isotropic medium bv reduction to the problem
of a bodv without cracks: An alternative method of solution of
the first fundamental problem for a simpl‘e smooth crack in an infinite
isotropic medium consiéts in considering the crack as a part of - the
boundary of two isotropic media, one of which'is finite and the other
infinite, in which the whole isotropic plane can he divided. The meth-
od of complex potentials for the solution of non-cracked media ¢an be
used for the problem considered and, after a proper modification, can
reduce it to a complex singular integral equation equivalent to that
of section A3. '

A5. Solution of the problem of the simple smooth crack
in an infinite isotropic medium bv using its solution for
a simple straight ‘crack: One last method of treating the first
fundamental problem for a simple smooth crack in an infinite isotropic
medium consists in properly modifying its classical solution for the
.special case of a straight crack. The problem can be reduced toa sys-
tem of two singular integral equations along the crack together with

the necessary condition of single-valuedness of displacements.
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A6. A general method of solution of the second funda-
mental problem for a simple smooth crack in an infinite i-
sotropic medium: The second fundamental problem for a simple smooth
crack in an infinite isotropic medium can be treated in a quite anal-
ogous way ito that used in sections Al to A5 for the first fundamental
problem: Here the method of section Al is used to reduce this problem
to a singular integral equation along the crack together with the con-
dition of the resultant -force applied.on the crack.

A7. A general method of solution of the mixed funda-
mental problem for a simple smooth crack in an infinite
isotropic medium: The mixed fundamental problem for a simple smooth
crack in an infinite isotropic medium can be reduced to a complex sin-
gular integral equation along the crack together with the condition
of single-valuedness ‘of displacements. This equation depends on the
existing boundary conditions on the edges of the crack.

A8. A general method of solution of the problem of a
simple smooth crack in an infinite anisotropic medium: The
first fundamental problem for an infinite anisotropic medium contain-
ing a simple smooth crack is reduced to a complex singular iﬁtegral
equation along the crack together with a condition of single-valued-
ness of displacements, in a similar way to that used in section Al for
the 1sotroplc case except for the use of complex potentials @(z ) and
¥(z, ) instead of ®(z) and ¥(z).

A9. Another method of solution of the problem of the
simple smooth crack in an infinite anlsotropic medium: The
same method used in section A2 for the isotropic case can, properly
modified , be used for the solution of the first fundamental problem for
a simple smooth crack in an infinite anisotropic medium. The problem
is vreduced to a complex singular integral equation equivalent to that"
derived in section A8. Two other equivalent Fredholm-type integral
equations are also given. All these equations are accompanied by the

condition of single-valuedness of displacements.



CHAPTER B’': Complex crack problems

In this chapter more complex crack problems are consid-
ered, as cracks in finite or composite media or arravs .of
cracks. Only the case of the first fundamental problem and
of isotropic media is considered because of the fact that
effective methods of solution can be easily derived for the
cases of the other fundamental problems as well as of an-
isotropic media if the corresponding methods  of solution
derived in Chapter A’ for the simple smooth crack-are taken
into consideration. Also, useful formulas for the calcu-
lation of stress intensity factors are given. The method
of complex potentials is used throughout the chapter.

B1. Cracks in an infinite isot¥opic medium: The first fun-
damental problem for an infinite medium with cracks is reduced to a
complex singular integral equation along the cracks together with con-
ditions of single-valuedness of displacements equal in number to the
number of cracks. Application to the case of straight cracks is given
in more detail. /

B2. Crack in a finite isotropic medium: The first fundamen-
tal problem for a finite isotropic medium containing a crack isreduced

to a complex singular integral equation along both the crack and <*he

boundary of the medium together with a condition  of single-vs
of displacements around the crack.

B3. Crack between two isotropic media: The first fundamen-
tal problem for an infinite isotropic medium containing an isotropic
inclusion with a crack along a part of its boundary is reduced to a
complex singular integral equation along the entire boundary of the
inclusion, the crack included, together with a condition of single-val-
uedness of displacements around the crack.

B4. Row of periodic cracks in an infinite isotropic me-
dium: The first fundamental problem for a row of periodic smooth cracks
in an infinite isotropic medium is reduced to a complex singular integ-
ral equation along one of the cracks together with acondition of gingle-

valuedness of displacements. The derivation of this equation is hased
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either on the theory of periodic functions or on the theory given .in
section Bl and regarding the interaction between several cracks in an
infinite isotropic medium. The method of conformal mapping canbe also
used.

B5. Doubly-periodic array of cracks in an infinite iso-
tropic medium: The first fundamental problem for: a doubly-periodic
array -of smooth cracks in an infinite isotropic medium-is reduced to a
complex singular infegral equation along one of the cracks together with
a condition of single-valuedness of displacements. The derivation of
this equation is based on the theory of doubly-periodic functions.

B6. Array of radial cracks in an infinite isotropic me-
dium: The first fundamental problem for an array of radial smooth
cracks in an infinite isotropic medium is reduced to a complex singular
integral equation along one of the cracks together with a condition of
single-valuedness of displacements. The derivation of this equation is
based either on the theory of automorphic functions or on the theory
given in section Bl and regardiﬁg the interaction of several cracks in
an infinite isotropic medium. The method of conformal mapping can also
be used. Application to the case of an array of straight radial cracks
is also given. )

B7. Crack with angular points or sets of cracks with a
common point in an infinite isotropic medium: The problem of
a crack with angular points or a set of cracks with a common point is
studied with emphasis on the problem of finding the singularifies ~of
the complex potentials around angular points or common points of cfacks.
Afterwards, the reduction of the problem to the problem of a smooth crack
studied in section Al is easily possibkle.

B8. Case of anisotropic media - Generalizations: The
methods of treating crack problems studied in this chapter for the case
of the first fundamental problem and of isotropic media can be proper-
ly modified so as to apply to the cases of the second or the mixed fun-
damental problems as well as the case of ‘an.isotropic media. It isalso
possible to combine the above methods so that more complex crack prob-

lems, than that considered in this chaptér, can be solved.
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BY9. Stress intensity factors: Useful formulas are given for
the calculation of stress intensity factors at the tips of cracks, sup-
posing that the complex potential ¢(z) or the dislocation function or
some other equivalent function has been previously calculated. An ex-

ample for the case of an arc-shaped crack is also given.

CHAPTER I'': Numerical solution of singular integral equations

In this chapter an effective method for the numerical
solution of s:j.ngular integral eqguations with Cauchy-type
kernels, as those derived in chapters A’ and B',is present-
-ed. By using this method, a singular integral equation can
be numerically solved by about the same amount of computa- ~
tion to that required for the numerical solution of an in-
tegral equation with regular kernels.

', Introduction: The methods of numerical quadrature as ap-
plied to the solution of‘integral equations are presented in a general
way.

I'2. On the existing methods of numerical solution of
singular integral eguations: A brief account of the already ex-
isting methods of numerical solution of singular integral equations is
given accompanied by the advantages and disadvantages of each one of
them. '

I'3. The Gauss-Chebyshev and Lobatto-Chebyshev methods
for the numerical solution of singular integral eaquations:
The Gauss-Chebyshev method for the numerical solution of singular 'in-

_tegral equations is proved to be,in reality, a Gaussian integration
method by consideration of its accuracy, which was not thoroughly in-
vestigated previously. Thé method Lobatto-Chebyshev for the numerical
solution of singular integral equations is further derived for the first
time and in a way similar to that used for the already known Gauss-
Chebyshev method. These methods basically make use of the correspond-
ing methods of numerical quadrature, but not in an explicit way, for
the calculation of the Cauchy-type integrals of the singular integral

equations and find proper points of application of these equations so
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that the Cauchy-type singularities do not influence the accuracy of
calculation of the Cauchy-type integrals. The advantage of the Lobat-
to-Chebyshev method over the Gauss—Chebyshev method, in case of crack
problems, is that by the use of the Lobatto-Chebyshev method the values
of the stress intensity factors at the tips of the cracks can be di-
rectly determined aftér the numerical solution of the corresponding sin-
gular integral equations.

I'4, Application of the Gauss quadrature method to the
calculation of singular integrals: The Gauss quadrature method
can be properly modified so as to apply té the numerical calculation
of Cauchy-type singular integrals. This modification consists in in-
cluding one more term in the approximate expression of suchan integral.
The accuracy of this modified Gauss quadrature method is quite equal to
the accuracy of the usual Gauss quadrature method.

I'5. %pplféation of a general method of numerical integ-

‘ration to the calculation of singular integrals: A Cauchy-
type singular integrai can be computed numerically in the same way asan
ordinary integral, except for the fact that the simple pole of the in-
tegrated function inside the integration interval must be taken into
account. Inthisway, a new term, not existing in the approximate ex-
pressions of ordinary integrals, should be added. By this method, any
quadrature formula used for ordinary integrals can be modified to be
used for Cauchy-type singular integrals too.

,T6. Application of the Radau and Lobatto cuadrature
methods to the calculation of singular integrals: The Radau
and Lobatto methods of numerical quadra.ure are derived as special cases
of the general method of calculation of singular integrals developed in
section T5.

r'7. Approximate method of solution of singular integral .
equations: A singular integral equation can be numerically solved
if its integrals are expressed in an approximate way by the use of a
proper quadrature formula and then the equation is applied to certain
points inside thé integration interval. In this way, a system of

linear equations results, which can be easily solved, The points of
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application of the singular integral equation must be selected as the
the roots of certain transcendental functions in such a way that the
extra term in the approximate expression of a singular integral vanishes
when this integral is numerically expressed as an ordinary integral.

I'8. Calculation of a function in an interval bv means
of its values at certain points of the interval bv inter-
polaﬁion: Brief accounts of the well-known methods of interpolation
are given as applied to cases when a function has been determined only
at the abscissas of a numerical quadrature rule and need to be deter-
mined over all the corresponding integration interval.This caseresults
after the solution of the system of linear equations approximating a
singular integral equation has been found.

r9. Common cases of singular #ntegral equations and
methods for their solution: The numerical method of solution of
singular integral equations described in section TI'7 is applied to the
most usual cases of numerical integration rules used for the calcula-
tion of the integrals of the singular integral equations. For eachone
of these rules, which are of the Gauss, Radau and Lobatto type, the
functions, the roots of which are the points of application of the
corresponding singular integral equations, are given in an explicit
form. These functions are derived from the orthogonal polynomials
associated with the considered quadrature rule. In this way, eachrule
applicable to a certain integration interval and a weight function and
further to ".a singular integral equation containing a -Cauchy-type
integral, with the same integration interval and weight function, can
be thought, when complemented by the values of the points of application
of the singular integral equatioq, as a rule for the numerical solution
of the singular integral equation. Thus, the following methods for the
solution of singular integral equations have been considered: Gauss-
Legendre, Lobatto-Legendre, Gauss-Chebyshev, Lobatto-Chebyshev, Gauss-
Jacobi, Gauss-Laguerre and Gauss-Hermite, as well as modified forms of
the Gauss-Legendre, Lobatto-Legendre and Causs—Hermite methods through
the change of variable: = =t2 or T =l-t2, where t 1s the variable of

integration for the normal form of the rule and t for its modified form.
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These modified rules are equivalent to,Gauss, Radau and Lobatto rules
and very useful for the numerical solution of singular ‘integral equa-
tions ocurring in crack problems. Tables of thé abscissas of applica-
" tion of a singular integral equation for ::.ts numerical ‘solution are
given in the cases of' the Gauss-Legendre, modified Gauss-Legendre, Lo-
batto-Legendre and modified: Lobatto-Legendre methods.

r'10. Remarks: Useful remarks regarding the accuracy of a method
of numerical quadrature, when applied to the solution of a singular

integral equation, are given.

CHAPTER A': Applications to definite crack problems

In this chapter the methods of solution of crack prob-
lems developed in chapters A’ and B’ are applied to some
known crack problems. For the solution of the resulting
singular integral ecuations, the Radau and Lobatto methods
have been preferred over the corresponding Gauss methods
because of the fact that in this way the stress intensity
factors at the tips of the cracks can be directly computed.
Comparison of these methods of treating crack problems with
other already existing methods is made wherever possible.
Tables of the values of the stress intensity factors at the
tips of the cracks are also given. Examples for the cases
of regularly distributed, intersecting or branched cracks
‘are considered. '

A1. Application 1: Row of collinear periodic cracks:
The well-known problem of a row of collinear periodic cracks in an in-
finite isotropic medium is considered. All cracks are loaded witha con-
stant ‘pressure. The problem is reduced to a singular integral equation
‘along one of the cracks, which is solved by the Lobatto-Chebyshev meth-
od. The distribution of the dislocation function along ‘the cracks is
given for some typical cases as well as the corr’espondiné values of
the stress intensity factor at the tips of the cracks, which are in
agreement with its theoretical values found by the closed*form solution

of the present problem. Extension of the method of solution to. more



x1lv

complicated cases of rows of periodic cracks is quite possible.

A2, Applic-atiori 2: Row of parallel péi‘iodic cracks: The
problem of a row of parallel periodic cracks in an infinite isotropic
medium and with a constant pressure along the edges of the cracks is
considered. The problem is reduced to a singular integral equation a-
long one of the cracks, which is solved by the Lobatto-Chebyshev method
as in the case of Application 1. The distribution of the dislocation
function dlong the cracks is given for some typical cases as well as
the corresponding values of the stress intensity factors at the tips of
the cracks, which are in agreement with their values already found by
other methods. Extension of the method of solution to more complicated
cases of rows of periodic cracks is quite possible. k

A3. Application 3: Doubly-periodic array of cracks:
The problem of a doubly-periodic array of cracks in an infinite - iso-
tropic medium and with a constant pressure along the edges of the cracks
is considered. The problem is reduced to a singular integral equéti?n
along oné of the cracks , which is solved by the Lobatto-Chebyshev meth-
od as in the cases of Applications 1 and 2. The distribution of the
dislocation function along the cracks is given for some typical cases
as well as the corresponding valueé of the stress intensity factors'at
the tips of the cracks, which are in agreement with their values already
found by other methods. Extension of the method of solution to more .
complicated cases of doubly-periodic arrays of cracks is quite possi-
ble.

Ad.- Application 4: Symmetrical star-shaped crack: The
problem of a star-shaped crack in an infinite isotropic medium and with
a constant pressﬁre along the edges of the crack is considered. The
problem is reduced to a singular integral equation along one of the
cracks, which is solved by the modified Gauss—Legendrenwthod. Thedis-
tribution of the dislocation function along the crack is given for va-
rious numbers of the branches of the star-shaped crack as well as the .
corresponding values of the stress intensity factors at the tips of the
cracks,. which are in agreement ﬁith their values already found by other

methods. Extension of the method of solution to more complicated cases
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of cracks with a radial symmetry is quite possible.

A5. Application 5: Cruciform crack: Theproblemof a cru-
ciform crack in an infinite isotropic medium and with a constant pres-
sure along the edges of the crack is considered. This problem, in the
case of an unsymmetrical cruciform crack, is reduced to a system of
singular integral equations along the two arms of the crack, which is
simplified to one singular integral equation in the case of a symmetri-
cal cruciform crack. These equations are solved by the modified Gauss-
Legendre, the Gauss-Chebyshev and the Lobatto-Chebyshev methods. The
distribution of the dislocation function along the crack is given for
Qarious ratios of the lengths of the arms of the crack as well as the
corresponding values of the stress intensity factors at the tips of the
crack , which are in agreement with their values already found by other
‘methods. Extension of the method of solution to more complicated cases
of intersecting cracks is quite pdssibie.

A6. Application 6: Edge crack in a half-plane: The prob-
lem of an edge crack normal to the boundary of an isotropic half-plane
and with a constant loading at infinity and normal to the crack iscon-
sidered. The problem is reduced to a system of two singular integral
equations along the crack and the boundary of the half-plane, which is
solved by the use of both the modified Gauss-Legendre and the Gauss-
Laguerre methods. The distribution of the dislocation function along
the boundary of the half-plane and the crack is given as well as the
value of the stress intensity factor at the tip of the crack, which is
in agreement with its value already found by other methods. Extension
of the method of solution to more complicated cases of edge cracks is
quite possible. ,

A7. Application 7: Simple smooth crack in an infinite
isotropic medium: The problem of a simple smooth crack in an infin-
ite isofropic medium and with a constant loading at infinity is consid-
ered. The system of two singular integral equations derived for this
problem in section Al is solved for the cases of a straight crack as
well as an arc-shaped crack by the use of the Lobatto-Chebyshev method.

The distribution of the dislocation functions along the cracks is given
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as well as the values of the stress iﬁtensity factors at the tips of
the cracks, which are in agréement with their theoretical values. Ap-
plication of the method of solution to any case of a simple smooth
crack in an infinite isotropic medium is quite possible.

A8. Application 8: Branched crack: The problem of a
branched crack in an infinite isotropic mediumand with a constant load-
ing at infinity and normal to the branched crack is considered. The
problem is reduced to a system of three singular integral equations
along the composite crack, which are solved either by the use of both
the modified Gauss-Legendre and the modified Lobatto-Legendre methods
or by the use of only the modified Lobatto-Legendre method together
with two obvious conditions at the point of branching of the main crack.
The resulting values of the stress intensity factors at the threetips
of the composite crack are given and are in satisfactory agreement
with their. experimental values since no theoretical values have been
derived for this problem. Extension of the method of solution to any
problem of cracks emanating from a common point is quite possible.

A9. Application 9: Row of parallel semi-infinite pe-
riodic cracks: The problém of a row'of parallel semi-infinite pe-
riodic cracks in an infinite isotropic medium and witha constant pres-
sure applied along the edges of the cracks is considered. The problem
. is reduced to a singular integral equation along one of the cracks,
“which is solved by the modified Gauss-Hermite method. The distribu-
tion of the dislocation function along the cracks is given as well as
the value of the stress intensity factor at the tips of the cracks,
which is in agreement with its value already found by other methods.
Extension of the method of solution to more complicated cases of rows

of semi-infinite periodic cracks is quite possible.
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1, T'ENIKOTHTEZ

‘H @ewpla Tfic "EractindIntog, uUé toapuoyag Tfig dnolag
elc TMPORARUATO CWUATWV UETA OWYUDV doxoroVueda elg ThV mMa-
poboav épyaciav, &xel lotoplav &vog nepinov aldvog, GAA" 1
gvtovoc AVAnTUELC Tng £AaBe Xwpav no.td TA TeAevtala TEOCOO-
pdrovia £In, naTd TNV SLdpreLav THV oo lwv ENeAdInoav nNAet-
ota mpoBAnuata téoov Jewpntiunod Soov nal mponTirod €vbia-
@épovtog, UETAED TdV Omolwv nol TPOBANUOTA CWUATWV LETA pw=
YUdV.

Td meoBAnuata, ué TA Omola 94 AoxoANdBUEV elg THV Ta-
poGoav épyactav ual T@V dmolwv 9d mpoomnadNowEY VA EVPWUEV
tde AdoeLg fi TodAdXLOTOV VA OodE LEWUEV YEVLUAC nedddoug
AVTLHETWN{OEWS, Goopolv elg TAV ebpeocLy TV Nedlwv TGOV TA-
gewv nail TOV uerqronéoemv gvTtdc memepacuévoy fi Anelpwv ow-
LETwV HETE PWYU®V GAA° €0OLOUOUEVWV elc uatdoTacLy ETLTE-
Sov moTamovihoewc. Tobto onualvelr &TL ¢ oduata TadTto elvat
elTe Anelpwe WLUPOD TMAXOUC EUTELVOUEVO nwoévov natd tdg &lo
sLaotdoeLe, 8Te €xouev Tnv mneplnitwoiv Tig gnLmédov £€viaTL-
ufic uatactdoewg, elTe Aneipwg HEYAAOUL TAXOUG EUTE LVOUEVQ
ual uatd tde TPEle SlLaoctdoelg, AAAA wE dpia HeTABAAASLE VO
uévov natd tdg Vo durdotdoeLg wal dveEdptnta Tfigc TPLTNG OL=-
aotTdoewe, 8TE EXOHEV TNV MEPIMTWOLV Tfic émimeSou  TOPAUOPT
owoLanfic nataoTdoewg. NMAvIiwg N SLATPAYUATEVOLG duowoTEPWV
TGV MEPLTTOOEwV ToVTwv Elvat duola.

NepalTépw Sexouedo STL €nl TAOV Tuxdv Lmapxoviov  Oplov
TGV SEWPOULEVWY COUATOV OC Hal En’ AupoTEPWY TAV TAEVLPHV
BV poyudv 8idovtal fi al cvviotdoal TGV EEWTEPLUAC EMLPAA-
Aouévev tdoewv, uddeTog Hal SroTunTiun, 8te Afyouev OTL E&-
YOUEV THV MeP(MTwolv Tol ME®dToL Seuer Lddouvg mpofAinuatog, fi
ail Ooiotdueval uetatonloerg, OTE Aéyouev STL €XOUEV TNV TE-
pilntwoLy Tod &euvTepou SeuerLddoug mpoBAriuatog, A Télog E&mnl
TLvev uév oplov Tod cwuatog al cuviLoThoal TOV EEWTEPLUBS E-

nLBaAAonéVeY TAoEwv, €nl &€ TV Omorotlnov oplwv Tol owua-—



Toc al Voirotdpevar petatonioeire, &Te Aeyouev &tL €XOUEV TNHAV
nepimMTwoLly Tod pLrtod JepeAiLwdouvge mpoPBAnuatoc. Avvdueda Pe-
Balwg vd dewpnowpev ual &Aiwv TONwvV dproundg ouvvdiuag, Td dv-
TioToLxo Suwe mpoBAnuata elvaur dALYDTEPOV oLVASM TGV  TELEV
TPONYOLLEVWE AVAPEPIEVTWVY.

ALd TV EMLAUOLY TV TPoavapepdEvIwy MEoRANUATWV 34 Xpn-
OLUOTOLNOWHEV . TV Bewplav Tfic "ElacTtindintog, fitig €xeL  bOg
Bdoiv TV voéuov Tolh HOOKE, uatd TédVv Omotov al ouviotdoal T@V
Tdoewv nal al ouvvioTdoal TGV MopAULoPYNoewv, atTLveg beoloTav-
TaL &vTtog &vdce péoov, cuvbéovial 6Ld ypauuludv oxecewv. H
Bewpla TAc "ElacTtLndTntog SI8EL ONUAVTLHAC AMAOTOLNUEVOLG
tonovg, dtav €papuocdii eig g¢nineda mpoBARuata, O¢ TA €viald-
Ja. EEetaocdnoducva.

ALd TAV énlAvoLv TGV mpoBAnudtwv Tfic éninédouv ‘EAacTL-
uoétTntoc S60vavialL vd xpnoiuponolndodv Sidpopolr pnédodor. ‘En
ToOTwV N TMAEov uoLvhy, TNV dnolav ual AMOUAELOTLUBS HATOTEPW
94 ypnoipomnoilnowuev, elvalr 7 BaciLlouévn énl tfic Sewplag TAV
HLYAS LUV ovvapThoewy xal éniLdidunovoa TOV mpoodiopLoudv &vo
LLYOSLUGDY Suvapnludyv, ocuvvaptioewv Tiic Yéoewe &vidg Told Eund-
otoTe Jewpouvpnévou cduaTtog Hal petaBailouévev BeRalwg udvov
uatd Tdce 6V0 SiLactdoeig, nad’ doov TA €EeTaldueva évtadda
npoRARuATA é&ewpﬁ&ncav Enineda.

Abvatal V& onuelwdfi doodtwe Tl 6Ld Tfic mpoavaoepdel-
ong HeSSE0oU THV PLYASLUGY SuvaRLUBY EXeL ANodfy TS uneyaAdte-
pov uépog THV Anoteleoudtwv tfic Ocwplagc Tfic &ninédov ‘Elo-
oTLrATNTOC. "ETepal Stadedopéval pédodor EniAdoewg MEoBANUA-
Tov Tfic Bcewplac tTfic énunédouv ‘ElaocTindTntog €lval A pédodog
THV OAOUANPOTLUDY UETACXNUATLOUDY, O¢ & peTaoxnuatioudg FOU-
RIER ual & peETAOXNUATLOPOC MELLIN, wkal 1 pedodog TAV TETE-
POOLEVWY OTOLXELWV. *EX TOOTwV 1 TPwTn mapouvoldlel T LELOVE-
ntipata 8TL €lg HLUEdV udvov &oLdudv npofAnudtev &dvatal Vvad
toapuoodfi nal 8tL elvalr moAdnAonog, €vjd N Seutépo MAPOUOLAE—
Cer 16 petovéutnua 8tL elval €vteAdc doLduntiny uédobogc nal
uLupde dupLBetag.



2. TENIKAT TTAPATIOMIIAI

Mépav TOHV MAPATOUNHY TV SLdouévev elc &uaotov Tufipa
Tic mapoldong uerétng nal dwopwodv elg Td &ni pépouve &€Eeta-
Coéueva Séuata, Suvdueda vd &vooépwinev nal OPLouévac YEVL—-
nol yapautfipog é€pyvacliag, TO mepLexduevov TV dmolwv EANOIN
On’ YLy ratd TV ovyypaenv Tfig mapovong HEAETINC.

00tw, HETAEY TGV vyeviuoD £vSLanépovTog CUYYPAUUATWV TV
dvaovepouévwov e€ig -tV dewplav TAig élacTLudTnTtog SuVALeda VA
dvapepwuey TAd TGV TIMOSHENKO and GOODIER {1970} ,LANDAU and
LIFSHITZ {1970}, SOLOMON {1968}, @EOXAPH {1970} wual LITTLE
{1973}. mielovag mopanoundg edplououev eig Td £vELamepov
dpdpov Tol TEODORESCU {1964}. Tepaitépw, © &vtadda Ypno.-
LOTOLOVREVN PETOSOC TOV ULYABLUDY SUVAML LUV AdvantdooeTalL
elg T4 ovyypduuato TAV MUSKHELISEVILI {19532}, GREEN and
ZERNA {1968}, MILNE-THOMSON {1968} wual ENGLAND {1971A} d&c¢
nol elg T4 4pSpa TdvV MUSCHELISVILI {1933}, STEVENSON {1945}
ual TIFFEN {1952}. Ei&.uwtepov, 7N dewpla THic émniLmédouv &la-
oTLrOTNTOC SLd TNV MEPINTWOLY AVLoOTEOTwY UEowv dvantooe—
Tal ei¢g T&d ovyypdupato THvV LEKHNITSKII {1963,1968}, SAVIN
{1961} uoil TAAIAAKH {1968}.

‘Epapuoydg tfic dewplag ThAc énimédouv &lactLudTnTog elc
npoBANnuUaTa pwyYudv edplorouev énlong e€lg Td olYYPALULA TV
SNEDDON and LOWENGRUB {1969}, 16 &p9pov Ttol HAHN {1970}, Thv
ovAloynv dpdpwv Told SIH {1973}, v épyaociav tod INAKEIMIAH
{1973t nal t6 éyxeitpldiov TV TADA, PARIS and IRWIN {1973},
elg TO OmoTov UMApXeL nal MANPENG CELPA TAPOTOUTOV OXETLUDV
LE TOV MPoodLopLoudy TAV CUVITEAECTIAV EVTACEwS TV TACEWV
elg TA drpa pwYUdVv, olTLveg &€ mpémelr vd cuyxéwvTal UE ToUC
CUVTEAEOCTAC OUYKEVIPWOEWG TACEwvV £l¢ uwéoa A&VEL pwYUdV, TE-
pl TGV Onolwv Advagepouv oi NEUBER and HAHN {1966} wual o}
PETERSON {1974}.

ALd TOV TELPALATLHOV TIOOCSLOPLOUOV TV CUVIEAECTAV &v-

Tdoewg THV TAoewv elg TA Aupa pYU®V 7 TAgov EmLTuX®C XPN-



owuonoLovpnévn 1édodog elvalr i uédodog TGV naLCTLUGY T &va-
ntuxdeloa Ond Tol THEOCARIS {1970} ual évapuocdeloa elg
nAetoto TMEORANUATA PwYUdV OMd Tol THEOCARIS, oclvolLlv TRV
dnolwv edplononev eitc té dodpov Tod THEOCARIS {1972}, oC
nal Oné T@v THEOCARIS and JOAKIMIDES {1971} nal raoYToy {1973k

MepalTéPw, LETAED TV AVaneEPOLO®V YEVLHAC WHEDSSoug E-
TLAOCEWS TOV TPoPANUdTwY THAg émumnédouv €ractindinTtog Epya-
oLdv duvdueda vd dvapépwuev TA &pdpa TV LAURICELLA {19009},
BESKIN {1944}, RAUSCH {1966}, FINE and NILSON {1966}, RIZ-
70 {1967}, OLIVEIRA {1968}, SEGEDIN and BRICKELL {1968},
BENJUMEA and SIKARSKIE {1972} ual BOWIE, FREESE and NEAL
{1973}, eic td omota Suwg 8év dvtinetwnileTalr natd BaoLv
16 mPdRANuLa ToU UETA PpwYUDY WECOUL.

*Ooov dowopd Télog el¢ TS wadnuaTLrov HEPOC TAQ napovong
tpoyaolac, €véveTto XpfioLg T@V oLYYPAUUATWY TGV AHLFORS 1966},
PHILLIPS {1957,1966} ol NEVANLINNA and PAATERO {1969} émnl
TV ULYOSLUDY oLVAPTNOEWV, TV ouYYPOUUATWY TV MUSKHELISH-
VILI{1953B}, TRICOMI {1957}, MIKHLIN {1957}, GAKHOV {1966},
POGORZELSKI {1966} wal( DELVES and WALSH {1974} &¢ wal ToD
&pdpou Tol WOODS {1971} énl tdHV dAouinpwudtwv CAUCHY nal
THV OAOUANPWTI LUV EELOHoEWV, TOV oLYYPouUUATwv TV HASTINGS
{1955}, RAINVILLE {1960}, ABRAMOWITZ and STEGUN {1965} wnal
BELL {1968} &ni &Lopdowyv napovotalonévwy €(8Ludv ouvopTn-
cewv, TOD ouyypduuatog Tol FORD {1957} énl aldToudppwv cuv-
apThocEwv, TGV ovyyoaupdTwy TV MINEUR {19521}, HILDEBRAND
{1956}, KOPAL {1961} nal RALSTON {1965} énl SeudIwv To I
guntiufic dvardoewg nal eldiudtepov dpLduntiunfic AAOUANPWOE~
wc, €lc THV dMolav AMOUAELOTLUBS AvadEPOVTIaL TA OLYYPEAUHA—
Ta. TGV STROUD and DON SECREST {1966} wal DAVIS and RABINO-
WITZ {1967}, ual T@V OLYYPAUUATOV THV SZEGO {1959} nal{ TRI-

COMI {1961} éni Spdoywviwv TOAVWVOUWLV.



3. ENI TOQN OAOKAHPQMATON TYNOY CAUCHY

Edpela xofiole vYivetar e€lg THV mopoloav uperétnv tév o-

ArouAnpoudtov TOMouv CAUCHY tfic unopofic:

_ 1 | ()
e(z) = ZHiL‘T—Z v . (1)

Evia L AELOTH f &voulnTh uoaundAn éni Tod uiyadiuod Emimé-
&ov z.

‘ESvV TS onuelov z 8€v avhun elg TAV naunvinv L, €mnapunig
cuvInUn ONdpEewg ToD drouAinpwuatog (1) elvar vd elvat n
ouvdptnolg @(t) Tév onuetlwv t Tfic naunving L OAOHANPWO LUOC
natd TRV &vvoiav Tod RIEMANN &g mpdc t €viog TovTAC TuNua-
toc Tfig mounving L uwA mepiianpdvoviog onuetlov TL TAdING c,
(k=1,2,...,m), napd TO Omolov 1 ocvvdptnoirg ®(t) TAPOLO LA
Tev &o9eviy t&Lounopelav TAg wopefic {MUSKHELISHVILI , 1953B,
8§10} .
o(t) | <

Cy

It—ck\uk , Ck>0’ 0<ak<1 , k=1,2,...,m. (2)

‘0 4po9udc m TAV onue lwv Ch nEEneL ONwodnmote vd elval TE-
MEPACUEVOGC .

‘ESV AVTL9ETwe TS onuetov 2 cvunimtn pe £€v TGV onuelwv
t tfic woumdiAng L mAnv Tuxdv Unapxoviwv Anpwv abTfig, TO O-
AouAdpwuo. (1) év yévelr 8&v &xer €vvoiav. Elg v  TEeplnTtw-
oLV TadTnV dpilonev THV cuvdptnolv ®(t) o¢ {MUSKHELISHVILI,
1953B, §12}:

(3)

gvda & elval T Tufipa TAc maunving L td mepLexduevov EVvTOC
nLrpot uduiov mévipov t ual dutivog € JewWPOUVHEVNE TELVOU-
ong gelc TO undév.  Inavn ouvvdniun Lndpfewg Tod OAOUANPWUATOC
(3), 1o dnolov &noTerel TAV wuplav TLunv 1ol SAOUANPWUATOC
CAUCHY 6.4 Té towtepLud onupelo t THg naunving L glval n
MANPwoLe NS Tfig nuuvotntog @ (t) Tob drouAnpwupatog CAUCHY
(1) TfAc YeVineupévne ouvdnung HOLDER (H*) énil tfig noaundAng
L {MUSKHELISHVILI, 1953B, §29,§877}. Ta0vTnv 9d JewpduUev nAn-



POVLEVNV TAVTOTE UMO TAV munvoTRTwv ¢ (t) dlouAnpwndtwv CAU-
CHY Tfic nopofic (1).

MepalTé€pw d0vatalr vd Sevxdf 8tL ol opramal Tipal @i(t)
Tfig ovvaptnoewg ®(z) &Ld z telvov eitg &v onuelov t Tfic nap-
noAng L éun Tiig uidg i thg etépag mAevpdc (+ fi -) TadTng O-
ploTavtal Und TAdg mpoavapepde loag mpolnodéoeLc ual mAnpotv
Tobg TUmoug Tod PLEMELJ {MUSKHELISHVILI, 1953B, §17}:

o' (t) —0 T (t) = o(t) , o7 (t) +o (v) = 20(t) , (4)

€vda B ouvvdptnoig d(t) dplletar matd TSV TOMOV (3).

ALd T4 mpoPBARuata TA éEetaldueva eilg thv mapolboav Sia-
TPLBNAV 006dAwe évbiLapépouv al Tipal & (t) Tfic CULVOPTHCEWS
®(z) énl TAg moundAng L, &AAA& upévov al dpramal Tipal Qi(t)
Tfig ouvvapThoewg ®(2) mapd TaAg MAeuvpdg THC MmaundvAng L. Q¢
én tTolToUL, 94 ASVVaTOo VA& Jewpndfi & Sedtepoc TOTMOC TOD PLE-
MELJ &¢ oplLoudg Tfig ovvapthoewg ®(t), #Htic natd tadta -
cobtaL ué TéV uéoov Bpov THV dpLaMEY TLudv &' (t) wal & (t),
ondte & TUmog (3) 94 AdGvaTo vd Amode LX O &é ovveneta Tod
SevTEPOL TAV TOTwV (4).

INepalTepw XpnotponoLodvtalr éviote ual al mpdtar mopd-

yoyoL T@®V ouvvapTnoewv @®(z) tfic popofic (1) 6udduevar dnd tod

TOTMOoUL :
o' (z) = = | @1 _4¢ (5)
N 2ni (T-Z)2 !
L
€p” Sdoov TS onuetov 2 8€v &dviiner elg TtHv MoumdOANV L. Elc

TV MEPIMTwoLY TAdTNV travhy cuvdnun OndpEewe THV Op Landv
TLudV Q'i(t) mapd THvV raundoinv L elvatr # nmAnpwolc Omd  Tfic
Tapaywyou ¢’ (t) Tfig ovvaptriicewg @ (t) bdg mpdc t THg YEVLIHEL-
névne ouvvdinng HOLDER (H*) ent tfig nounding L {GAKHOV,1966,
§44} .7 0ocov dgpopd elg Tdg TLude @' (t) Tfic cvvapThicewe @' (z)
&Lda Td onueta t Tfig waunving L, mARV &V Anpwv Tavtng, ad-
Tal S8Vvavtalr vd 6pLodobv Bdoel Tod Seutépouv TAHV TUMWV TOoD
PLEMELJ (4) udiiov f§ Pdoer tomouv dvardyouv told (3),nad’ Socov

b terevtalog oltog &&v 94 elxev €vvorav, mMARV &d&v o(t) =0.



