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1.  General  Conslderatlons
The  problem  of  an  elastic  cracked  medium  under    condi-

tions  of  plane  stress  or  plane  strain  has  not  been  trea\ted
up  to  now  in  its  general  form  although  the    problems   of   a
finite  or  infinite,  simple  or  composite,  simply -connected
or  multiply-connected  medium  without  cracks have  been fully
solved.     It  is  the  aim  of  this  book  to  give general  andef-
f ective  methods  for  the  solution  of  any  plane  problem  of  a
medium  with  one  or  more  cracks  or  sets  of  cracks.

The  solution  of  such  a  problem  involve; the development
and  solution  of  the  necessary  equations.    As    regards    the
development  of  equations,   the' classical  metriod   of   complex
potentials  q)(z)   and  iu(z) ,   or  a(z)  andT(z), whichhas already
proved  Quite  e'ffective  in  solving  plane elasticity problems,
is  used  throughout.     Integral' representations  of  these  po-
tentials  are  proposed  for  crack  problems  in the form of Cau-
chy-type  integrals.    Thus  the  whole  problem  is  to  find  the
unknown  densities  of  these  potentials,  which formost  cases
can  be  interpreted  as  densities  of  concentrated   forces   or
dislocation  arrays  or  Combinations  of  them   acting   on    the
boundaries  of  the  medium  and  especially  on  the cracks. Both
the  f irst  and  the  second  fundamental  problems  of  the  Theo-
ry  of  Plane  Elasticity  as  well  as    tne-`  mixed    fundamental
problem  are  considered.     Of  cou'rse,   emphasis  is  put  on  the
solutioh  of  the  first  fundamental  problem, which applies  to



3exlv

the  usual  case  of  unloaded  cracks  in  a loaded along its oth-
er  boundaries  medium  too.     By  using  the   Plemelj  , formulae,
the  whole  problem  is  reduced  in  all  cases  to   the   solution
of  one  or  more  Cauchv-type  singular  integral   equations   a-
long  all  boundaries  of  the  medium     (the   cracks   included).
These  eauations  are  accompan,ied  bv  the  condition  or  condi-
tions  of  single-valuedness  of  displacements,  whichmust al-
wavs,  be  taken  into considerationaround  each  crack   or   hole
inside  the  medium.

As  regards  now  the  solution  of  the  resulting  equations,
this  consists  basically  of  the  numerical  solution    of    the
Cauchy-type  singular  integral  equati6ns  to   which   a    plane
crack  Problem  can  be  reduced,   as  mentioned  above.     For  the
numerical  solution  of  su'ch  equations,  which  have  been up to
now  a  problem  for  all  people  having  to  dowith them, aquite
ef fective  method  is  introduced  which  corisists  in the reduc-
tion  of  these  ectuations  into  linear  systems by applying  the
well-known  numerical  auadrature  procedures  to   the   Cauchy-
type  singular  integrals.     It  mav  be  noticed  that  theuseof
the  methods  of  numerical  integration  for Cauchyt-type integ-
r.als  is  allowable  only  when  the  points  of    application    of
the  singular  integral  eguations,  in  which   these`  intagrals
occur,  are' determined  as  root.s  of  trancsendental  equations
associated  with  the  numerical  auadrature  procedure  in  use.
In  this  way,    a   Cauchy-type  singular  integral  equation  can
be  thought,  as  to  its  numerical  solution,  almost   egual   in
dif f iculty    to    a    normal  integral  equation    with    regular
kernels.     This  method  for  the  numerical  solution  of  singu-
1ar  integral  equations  Can  be  equally  well  applied   to   the
solution  of  such  ecTuations  ocurring  not  only  in  the  theory
of  Plane  Elasticity,  but  also  in  a  lot  of  branches of Math-
ematical  Phvsics.                                                                    `

Applications  of. the  above-described  method  of  solution
of  crack  I)roblems  are  given  to  a  number  of  cases,   most   of
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which  have  been  already  solved  by  other  methods,  in    order
that ,a  comparison  with  the  method  proposed  in  this  book  is
possible.    It  can  be  seen  that  for the  firstt time  the  val-
ues  of  the  stress  intensity  factors at the tips of the cracks
are  found  directly `from  the  solution  of  the singular integ-
ral  equations  without  the  need  of  using  the  methods  of  ex-
trapolation  or  of  infinite  sums.

The  development  of  general  computer  programs    for    the
solution  of  any  crack  problem  that  riight  occur  in  a  possi-
ble  application  and  the  tabulation  of  the  points  of  appli-
cation  of  a  Cauchy-type  singular  in.tegral  equation  are  be-
yond   the   scope  of  this  book  but, it is hoped, will be treated
in  future  works.    It  is  thought  that    the    above-mentioned
points  could  be  a  complement  to  the  already`existing tables
of  abscissas  and  weights  of  the  numerical integrationmeth-
ods.

2.  Abstracts
The  whole  book  is  divided  into  four A chapters,    each  of

which  is  further  subdivided  into  nine  to  ten  sections.  Be-
cause  of  the  fact   that   different   problems    are   solved  in
these  sections,  short  abstracts  of  all  sections of thebook
are  given  below,  which,  we  believe,  will  prove  useful  to  a
reader  wishing to study only some problems among those treated
in  this  book.

It  must  also  be  noticed  that,  when  speaking  about  sin-
gular  integrals  and  singular  integral  equations,    we    mean
Cauchy-type  sing\ular  integrals  and  singular  integral  equa-
tions  with  Cauchy-type  kernels  respectively,  and  also  that
the  terms  Gaussian  quadrature  method, Radau quadrature meth-
od  and  Lobatto  quadrature  inethod  are  used    to    denote    the
Gauss-type  quadrature  method  with  all  its  abscissas  inside
the  integration  interval,  `^7ith  one  of  its  abscissas    coin-
ciding  with  one  of  the  erids  of  the  integration interval and
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with  two  of  its  abscissas  coinciding  with  both  ends` of  the
(

integration  interval  respectively.

CHAPTER  A':  The  problem  of  the  simple  smooth  crack    in    an
imf inite medium

In  this  chapter  the  problem  of  the  simple  smooth  crack
iin  an  inf inite  isotropic  or  anisotropic  medrfum is consider-
ed..    For  the  case  of  in  .isotropic  meditm,  tH-e  first  funda-
mental,  the  second  fundamental  and  the   mixed    fundamental
problem  are  studied,  while  for  the  case  o`f  an    anisotropic
ned.ium  only  the  f irst  fundamental  problem is examined.   Sev-
eral  methods  of  solution  for  the  f irst  fundamental  problem
are  proposed  as  it  is  the  most ,important.    Throughout    the
chapter  the  method  of  complex  potentials  is  used    and    the
problems  considered  are  reduced  to  complex  singular  integ-

'

ral  eauations  along  the  crack  together  with  a  condition  of
single-valuedness  of  displacements.

A1.   General  method  of  solution  of  the  rtroblem    of    the
simple  smooth  crack  in  an  inf inite  isotropic  medium :      The
first  fundamental  problem  for  an  inf`inite\  medium  containing    a   simple
sin.ooth  crack  is  reduced  to  a  complex  singulari  integl`al  equation   along
the  crack  and  a  condition  of  single-valuedness   of   displacements   ,   by
using  the  method  of  complex  potentials  ©(z)  and  Y(z)  together`  with the

Plemelj  formulae.     The  unknown  function  in  the  singulari  integral equa-,
tion,  which  is  the  density  of  a  Cauchy-type  integral  r`eprtesenting   the
function  ©(z),  can  be  rtelated  to  the  densities  of  concentrated   forces
and  dislocations  along  the  crack.     These  densities  could  be  called the

I

concentrated  forces  function  and  the  dislocation  function  r.espectively.
Reduction  of  the  complex  singular  integral  equation  to  two  real singu-
lar  integr`al  equations  and  application  to  the  problem    of    a   straight
cr`ack  ape  also  given.

A2.  Another  method  of  solution  of  the  problem    of    the
simTlle   smooth  crack  in  an  infinite  isotrortic  mediumt:       The
same  technique  described-  in  section  Al  is  used  to  reduce the first fun-
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damental  pr`oblem  for  a  simple  smooth  crack  in  an infinite isotropic me-

dium  to  a  complex  singular`  integral  equation  t6gether  with  the   condi-
tion  of  single-valuedness  of  displacements.     The  only   difference  con-
sists  in  a  differ`ent  expression  of  the  complex  function    ©(z)    thr`ough
a  Cauchy-type  integral.     Two  other`  Fr`edholm-type  integr`al equations  e-

quivalent  to  the  singular  integral  equations of section Al ahd\the  pr`es-
ent  section  are  also  der`ived,  but  their  form  is  rather  complicated.

A3.   Solution  of  the  T)roblem  of  the  simple  smooth  crack
in  an  inf inite  isotropic  medium  by  determination of  complex
Potentials  {Po(Z)    ;nd    Uo(Z)  :    One  mor`e  method  for  the   solution    of
the  fir`st  fundamental  problem  for  a  simple  smooth  crack  in  an infinite
isotropic  medium  can  be  der`ived  by  using  the  complex  potentials    apo(Z)

and  dyo(Z)   instead  of  ©(z)   and  Y(z)   used   in   section  A1.  Thecomplex sin-

gular  integrial  equation  thus  der`ived  is  proved   to    be    equivalent    to
that  found  in section  A1.                                                                                      ,,

A4.   Solution  of  the  I)roblem  of  the  simple  smoothcrack
in   an  inf inite  isotrortic  medium  bv  reduction to the problem
of    a  bodv  without  cracks:    An  alternative  method  of   solution    of
the  first  fundamental  problem  for  a  simple  smooth  crack  in  an inf inite
isotropic  medium  consists  in  consider`ing  the  crack  as  a   part    of    the
boundar`y  of  two  isotropic  media,  one  of  which` is  finite  and  the   other

infinite,   in  which  the  whole  isotropic  plane  can  T7e  divided.   Themeth-

od  of  complex  potentials  fort  the  solution  of  non-cracked  media  Can   be
used  fort  the  problem  considered`and,  after  a  ppoperi  modification,    can

reduce  it  to  a  complex  singular  integr`al  equation   equivalent   to   that
of  section  A3.

A5.   Solution  of  the  problem  of  the  simple  smooth  c`rack
in   an  inf inite  isotror>ic  medium  bv  using  its  solution    for
a   simple  straight  Crack:    One  last  method  of  treating    the   first
fundamental  pr`oblem  for  a  simple  smooth  crack  in  an  infinite isotr`opic
medium  consists  in  properly  modifying  its  classical  solution   fort    the
special  case  of  a  str`aight  crack.     The  problem  can  be  r`educed toa sys-
tem  of `two  singular  integral  equations  along  the  crack    together   with
the  necessary  condition  of  single-valuedness of displacements.
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A6.  A  general  method  of  solution  of  the  second   funda-

mental  problem  for  a  simple  smooth  crack  in  an  imf inite  i-
sotropic  medium:     The  second  fundamental  problem fori a simple smooth
crack   in  an  infinite  isotropic  medium  can  be  treated  in  a  quite  anal-
ogous  way :to  that   used  in  sections  Al  to  A5  for  the  fir.st  fundamental

problem.   Here  the  method  of  section  Al  is  used  to  reduce  this  problem
to   a  singular  integr`al  equation  along  the  cr`ack  together  with the con-
dition   of the  resultant  force  applied  on  the  cr`ack..

A7.  A  general  method  of  solution  of  the   mixed    funda-
mental  problem  for  a  simple  smooth  crack    in    an    imf inite
isotropic  medium:    The  mixed  fundamental  problem for a simple smooth
crack   in  an  infinite  isotropic  medium  can  be  reduced  to  a complex sin-

gular  integral   equation-along  the  cl`ack  together  with    the    condition
of   single-valuedness `of  displacements.    This  equation  depends   on   the
existing   boundary  conditions  on  the  edges  of  the  crack.

A8.  A  general  method  of  solution\ of  the  problem   of    a
simple  smooth  crack  in  an  inf inite  anisotropic  medium:   The
f irst   fundamental  problem  fort  an  imf inite  anisotropic  medium  contain-
ing   a  simple -smooth  crack  is  r`educed  to  a  complex    singular    integral
equation   along  the  crack  together  with  a  condition   of   single-valued-
ness   of  displac.ements,  in  a  similar  way  to  that  used  in  section Al fort
the   isotropic  case  except  for  the  use  of  complex  potentials  ®(z[)  and

.

Y(Z2)    instead  of  a(z)   and  Y(z).

A9.  Another  method  of  solution  of  the  problem   of    the
simple  smooth  crack  in  an  infinite  anisotropic  medium:   The
same   method  used  in  section  A2  for  the  isotropic  case    can ,   properly
modified ,  be  used  for  the  solution  of the first fundamental problem  for
a   simple  smooth  crack  in  an  infinite  anisotropic  medium.     The  problem
is   rieduced  t6  a  complex _singular  integral  equation  equivalent  to  that -
der`ived   in  section  A8.     Two  other`  equivalent    Fredhblm-type    integr`al
equations   are  also  given.     All  these  equations  are  accompanied  by  the
condition   of  single-valuedness  of  displacements.
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CHAPTER  8 ' :  Complex  crack  problems
In  this  chapter  more  complex  crack  problems are consid-

ered,as  cracks  in  finite  or  composite  media   or   arrays    of
cracks.     Only  the  case  of  the  first  fundamentalproblemand
of  isotropic  media  is  considered  because  of  the   fact   that
ef fective  methods  of  solution  can  be  easily  derived for the
cases  of  the  other  fundamental  problems  as  well  as   of   an-
isotropic  media  if  the  corresponding  methods    of    solut-ion
derived  in  Chapter  A'   for  the  simple  smooth  crack are taken
into  consideration.    Also,  useful  formulas  for   the   calcu-
lation  of  stress  intensity  factors  are  given.    The    method
of  complex  potentials  is  used  throughout  the  chapter.

81.   Cracks  in  an  infinite  isotropic  medium: Thefir`stfun-
damental  problem  for  an  infinite  medium  with  cracks  is    reduced    to    a
complex  singular  integral  equation  along  the  cracks  together  with  con-
ditions  of  single-valuedness  of  displacements  equal  in  number    to    the
number  of  cracks.    Application  to  the  case  of  straight  cracks  is  given
in  mor`e  detail.

82.   Crack in a finite isotropic  medium:    The  first  fundamen-
tal  problem  fort  a  finite  isotropic  medium  containing  a  crack isreduced
to  a  complex  singular  integral  equation  along  both _the   crack   ana    i,l`ie
boundary'of  the  medium  together  with  a  condition   of   single--vr€`.Iue!`:.iiess

of  displacements  around  the  cr`ack.
83.   Crack  between  two  isotropic  media:   The firstfundamep.-

tal  problem  for  an  infinite  isotropic  medium  containing    an    isotropic
inclusion  with  a  crack  along  a  part  of  its  boundarty   is   reduced    .to    a
complex  singular  integral  equation  along  the  entire    boundary    of    the
inclusion,  the  crack  included,  together.  with  a  condition of single-val-
uedness  of  displa6ements  around  the  crack.

84.   Row  of  periodic  cracks  in  an  infinite isotropicme-
dium:     The  first  fundamental  problem  for  a  row of per`iodic smooth cr`acks
in  an  infinite  isotropic  medium  is  reduced  to  a  complex  singular; imteg-
ral  equation  along  one  of  the  cracks together with a condition of  single-
valuedness  of  displacements.     The  dertivation  of  this  equation  is   i*ased
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either  on  the  theory  of  pel`iodic  functions  or  on  the  theor`y    given    in
section  81  and  regar`ding  the  inter`action  between  several  cracks   in   an
infinite  isotropic  medium.     The  method  of  confor`mal  mapping canbe  also
used .

85.  Doubly-periodic  a,rray  of  cracks  in  an infinite iso-
tropic  medium:`    The  first  fundamental  pr`oblem  for` a  doubly-periodic
arr`ay  of  smooth  cracks  in  in  infinite  isotl`opic  medium.is  reduced  to  a
complex  singulari  integral  equation  along  one  of the cr`acks together with
a  condition  of  single-valuedness  of  displacements.    The   derivation   of
this  equation  is  based  on  the  theory  of  doubly-per`iodic  functions.

86.,  Array  of  radial  cracks  in  an  infinite isotropicme-
dium:    The  first  fundamental  problem  for  an  arr`ay    of    radial    smooth
crtacks  in  an  infinite  isotropic  medium  is  reduced  to  a complex singular
integral  equation    along  one  of  the  cracks  together  with  a conditionof
single-valuedn6ss  of  displacements.     The  deriivation  of  this equation is
based  either`  on  the  theol`y  of  automorphic  functions   or   on  'the   theory

given  in  section  81  and  regarding  the  inter`action  of  several  cracks  in
an  infinite  isotropic  medium.     The  method  of  conformal  mappingcanalso
be  used.    Application  to  the  case  of  an  arr`ay  of  straightradialcracks
is  also  given.

87.  Crack  with  angular  points  or  sets  of  cracks  with  a
common  point  in  an  infinite  isotropic  medium:    The  problem  of
a  crack  with  angulari  points  op  a  set  of  cracks  with  a   common   point  is
studied  with  emphasis  on  the'  problem  of  finding   the   singular`ities    of
the  complex  potentials  around  angulart  points  or`  common  points of cracks.
Afterwards,the  reduction  of  the  problem  to  the  prJoblem 6f a smooth crack
studied  in  section  Al  is`  easily  possible.

88.   Case  of  anisotropic  media    -    Generalizations:    The
methods  of  tr`eating  cr`ack  problems  studied  in  this  chapter  for the ,case
of  the  first  fundamental  problem  and  of  isotropic  media  can  be  proper-
ly  modified  so  as  to  apply  to  thef cases  of--the  second  or  themixedfun-

damental  problems  as  well  as  the  case  of  an.isotropic  media.    It  isalso

possible  to  combine  the  above  methods  so  that  more  complex  crack  prob-
1

lens,  .than  that  considered  in  this  chapter,can  be  solved.
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89.   Stress  intensity  factors:     Useful  formulas  aregivenfor
the  calculation  of  str`ess  intensity  factors  at  the  tips  of  cracks,sup-

posing  that  the  complex  potential  ®(z)  or  the  dislocation   function   or
some  other`  equivalent  function  has  been  pl`evi-ously calculated.     An   ex-
ample  for  the  case  of  an  arc-shaped  cliack  is  also  given.

CHAPTER  I ' : Numerical solution of singular integral eouations
In  this  chapter  an  ef fective  method  for   the   numerical

solution  of  singular  integral  equations    with    Cauchy-type
kernels,  as  those  derived  in  chapters  A'  and  B',ispresent-
ed.    By  using  this  method,  a  singular  integral eauationcan
be  numerically  solved  by  about  the  same  amount  of  computa-
tion  to  that  required  for  the  numerical  solution  of  an  in-
tegral  equation  with  regular  kernels.

rl .   Introduction:    The  methods  of  numerical  quadrature   as  ap-

plied  to  the  solution  of  integr`al  equations  are  pr`esented  in  a  general
Way.

r2.  On  the  existing  methods  of  numerical    solution    of
singular  integral  equations:     A  brief  account  of  the. already  ex-
isting  methods  of  numerical  solution  of  singular  integral  equations  is

given  accompanied  by  the  advantages  and  disadvantages  of  each    one    of
them,

r3.   The  Gauss-Chebyshev  and  Lobatto-Chebyshev    methods
for  the  numerical  solution  of  singular  integral  eauations:
The  Gauss-Chebyshev  method  for  the  numerical  solut-ion  of  singular   \ in-
tegral  equations  is  pr`oved  to  be,in  reality,    a    Gaussian    integration
method  by  consideration  of  its  acctlr`acy,  which  was  not    thoroughly  in-
vestigated  plieviously.     The  method  Lobatto-Chebyshev  for  the  numerical

solution  of  singular`  integral  equations  is  further derived for the f irst
time  and  in  a  way  similar  to  that  used  for   the   alr`eady    known    Gauss-

'

Chebyshev  Tnethod.     These  methods  basically  make  use  of  the  cor`respond-

ing  methods  of  numerical  quadr`atur`e,  but  not  in  an  explicit    way,    fort
the  calculation  of  the  Cauchy-type  integrals  of  the  singular`    integral
equations  and  find  proper`  points  of  application  of these   equations    so
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that  the  Cauchy-type  singulartities  do  not  influence    the    accuracy    of
calculation  of  the  Cauchy-type  integrals.     The  advantage  of  the  Lobat-
to-Chebyshev  method  over  the  Gauss-Chebyshev  method,   in  case   of   crack

prtoblems,   is  that  by  the  use  of  the  Lobatto-Chebyshev  method thevalues
of  the  str`ess  intensity  factor`s  at  the  tips  of  the  cracks    can   be   di-
rectly  determined  afteri  the  numer`ical  solution of the corresponding sin-

gular  integral  equations.
F4.  Application  of  the   Gauss   quadrature  method  to  the

Calculation  of  singular  integrals:    The  Gauss  quadr`attlre  method
can  be  proper.ly modified  so  as  to  apply    td    the  numerical  calculation
of  Cauchy-type  singular`  integrals.     This  modification  consists  in    in-
eluding  one  more  tertm  in  the  approximate  expression  of suchan integr`al.
The  accur`acy  of  this  modified  Gauss  quadrature  method  is  quite equalto
the  accuracy  of  the  usual  Gauss  quadr`ature  method.

®.

r5.  'Application  of  a  general  method of numerical  integ-
`ration  to  the  calculation  of  singular  integrals:    A   Cauchy-

/

type  singular`  integr`al  can  be  computed  numerically  in the same way as an

ordinary  integral,  except  for  the  fact  that  the  simple  pole  of  the  in-
tegr`ated  function  inside  the  integration  interval   must   be   taken   into
account.     Inthisway,  a  new  term,  not  existing  in  the  apprioximate    ex-

pressions  of  or`dinary  integrals,  should  be  added.     By  this  method,  any
quadpature  formula  used  fort  opdinar`y  integrals  can  be   modified   to    be
used  for  Cauchy-type  singular  integrals  too.

r6.  Application  of  the  Radau    and    Lobatto    cTuadrature
methods  to  the  calculation  of  singular  integrals:    The  Radau
and  Lobatto  methods  of  numer`ical  quadraLure  are  derived as special cases
of  the  gener`al  method  of  calculation  of  singular  integrals developed in
section  r5.

r7`.  Approximate  method  of  solution of singular  integral
equations:    A  singular  integral  equation  can  be   numerically    solved
if  its  integrals  ere  expr`essed 'in  an  approximate   way   by  the  use  of   a

prioperi  quadrature  for`mula  and  then  the  equation  is  applied  to   certain
points    ihside    the    integration  interval.    In  this  way,  a    system   of
linear  equations  results,  which  can  be  easily  solved,    The   points    of
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application  of  the  singular  integral  equation  must  be  selected   as   the
the  roots  of  cer`tain  tr`anscendental  functions  in  such  a .way    that    the
extr`a  ter`m  in  the  approximate  expression  of a singular integrial vanishes
when  this  integral  is  numel`ically  expressed  as  an  ordinary  integral.

r8.  Calculation  of  a  function  in  an  interval   bv   means
of  its  values   at   certain  Tioints  of  the  in.terval  bv  inter,-
Polation:     Brief  accounts  of  the  well-known  method.s  of  interpolation
arie  given  as  applied  to  cases  when  a  function  has  been  determined  only
at  the  abscissas of a  numer`ical  quadl`ature  rule  and  need   to   be    deter-
mined  overt  all  the  cor`responding  integration  inter`val. This case r`esults
after  the  solution  of  the  system  of  linear  equations    apppoximating    a
singular`  integral  equation  has  been  found.

r9.  Conmon  cases  of  singular    integral    equations    and
methods  for  their  solution:     The  numerical  method  of  solution  of
singular`  integral  equations  descriibed  in  section  r7  is  applied   to   the
most  usual  cases  of  numerical  integl`ation  I`ules  used   for   the  calcula-
tion  of  the  integr`als  of  the  sirlgulan  integr`al  equations.     For eachone
of  these  riules,  which  are  of  the  Gauss,  Radau   and   Lobatto    type,    the
functions,  the  roots  of  which  are  the  points    of    application    of    the
cor`responding  singular  integl`al  equations,   ar`e   given   in   an    explicit
form.     These  functions  are  der`ived    fl`om    the    orthogonal    polynomials
associated  with  the  consider`ed  quad'hature  rule.     In  this  way, eachrule
applicable  to  a  certain  integration  interival  and  a  weight  function  and
further`    to  ' a    singular`    integral  equation  containing    a    Cauchy-type
integral,  with  the  same  integration  inter`val  and  weight   function ,  can
be  thought,  when  complemented  by  the  values of the points of  application
of  the  singular  integl`al  equation,  as  a rule  fori  the numerical solution

/

of  the  singular`  integl`al  equation.    Thus,  the  following  methods forthe
solution  of  singular  integrial  equations  h`ave  been   considered:      Gauss-
Legendr`e,   Lobatto-Legendre ,  Gauss-Chebyshev,  Lobatto-Chebyshev,  Gauss-

Jacobi,  Gauss-Laguerre  and  Gauss-Her`mite,  as  well  as  modified  forms  of

the  Gauss-Legendre`,  Lobatto-Legendrte  and  Gauss-Her`mite  methods  through
the  change  of  vartiable:     I =t2  or  I =1-t2,  where  t  is  the   vartiable   of
integr`ation  for  the  normal  for`m  of  the  r`ule  and I fort  its modified form.
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These  modified  rtules  are  equivalent  to^Gauss,  Radau  and   Lobatto   rules
and  very  useful  fort  the  humerical  solution  of  singular  integral    equa-
tions  ocurping  in  crtack  problems.     Tables  of  the  abscissas  of  apt)lica-
tion  of  a  singular  integral  equation  fort  its \  numerical    solution    arte

given  in  the  cases  of' the  Gauss-Legendre,  modified  Gauss-Legendre,  Lo-
batto-Legendre  and  modified  Lobatto-Legendre  methods.

I.10.   Remarks:    Useful  remarks  regarding  the  accuracy of a  method
of  numerical  quadrature,  when  a`pplied  to  the  solution    of    a    singular
integral  equation,  are  given.

CHAPTER  A' :  .Applications  to  definite  crack  problems
In  this  chapter  the  methods  of  Solution  of  crack  prob-

lens  developed  in  chap+ers  A'   and  8'   are  applied    to    some
known  crack  problems.     For  the  solution   of   the    resulting
singular  integral  equations,  the  Radau  and  Lobatto  methods
have  been  preferred  over  the  corresponding    Gauss    methods
because  of  the  fact  that  in  this  way  the  stress    intensity
factors  at  the  tips  of  the  cracks  can  be directly comp\uted.
Comparison  of  triese  methods  of  treating  crack problems with
other  already  existing  methods  is  made   wherever   possible.
\\

Tabl.es  of  the  values  of  the  stress  intensity  factors at the
tips  of  the  cracks  are  also  given.    Examples  for  the  cases
of  regularly  distributed,  intersecting  or   branched   cracks
are  considered.

A1.  Application  1:     Row  of  collinear    periodic  cracks:
The well-knounpl`oblem  of  a  row  of  collinear  periodic  cracks  in   an   in-
finite  isotropic  medium  is  considered.     All  cracks are loaded witha con-
stant  pressure.    The  problem  is  reduced  to  a  singular integral equation
\along  one  of  the  cl`acks,  which  is  solved  by  the Lobatto-Chebyshevmeth-

od.    The  distribution  of  the  dislocation  function  along   the   crtacks  is

given    for    some    typical  cases  as  well  as  the  cor`responding  values  of
/

the  stress  intensity  factor   at   the  tips  of  the  cracks,  which    are    in
agreement  with, its  theoretical  values  found  by  the closed=form solution
of  the  present  problem.    Extension  of  the  method  of   soluti`on   to    more
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complicated  cases  of  rows  of  periodic  cracks  is  quite  possible.
A2.  Applicatiori  2:     Row  6f  parallelpeiiodiccracks:  The

problem  of  a  row  of  parallel  periodic  cracks  in  an  inf inite    isotpopic
medium  and  with  a  gonstant  pressurte  along  the  edges   of   the   cracks   is
considered.    The  prtoblem  is  reduced  to  a  singular  integral  ,equation\a-
long  one  of  the  cracks,  which  is  solved  by  the Lobatto-Chebyshevmethod

+

as  in  the  case  of  Application  1.    The   distribution   of  the  dislocation
function  along  the  cracks  is  given  for  some  typical  cases   as   well    as
the  corrtesponding  values  of  the  stress  intensity  factors  at  the tit)s of
the  cracks,  which  are  in  agreement  with  their  values   already   found  by

otheri  methods.     Extension  of  the  method  of  solution  to more complicated

cases  of  rows  of  I)eriodic  crtacks  is  quite  possible.
A3.  Application  3:     Doubly-periodic    array   of   cracks:

The  problem  of  a  doubly-periodic  array  of  cracks  in  an    infinite  \ iso-
tropic  medium  and  with  a  constant  pressurie  along  the edges of the cracks
is  consideried.    The  prtoblem  is  reduced  to  a  singular  integral  equationi
along  one  of  the  cracks  ,   which  is  solved bythe Lobatto-Ohebyshevmeth-
od  as  in  the  cases  of  Applications  1  and  2.     The  distrtibution    of    the
dislocation  function  along  the  cracks  is  given  for  some   typical   cas_es
as  well  as  the  corresponding  values  of  the  str.ess  intensity  factors'at
the  tips  of  the  cracks,  which  arie  in  agreement withtheir values alr`eady
found  by  other  methods.     Extension  of  the  method  of  solution    to    more`
complicated  cases  of  doubly-periodic  al`rays  of  cracks  is  quite    possi-
bleo

A4.     Application  4:     Symmetrical star-shapedcrack:    The
problem  of  a  stari-shaped  Cr`ack  in  an  infinite  isotropic  medium andwith
a  constant  pressure  along  the  edges  of  the  criack    is    considered.     The

problem  is  rteduced  to  a  singular  integral  equation    along    one   of   the
cracks,  which  is  solved  by  the  modified  Gauss-Legendr`e method.   Thedis-

tribution  of  the  dislocation  function  along ~the  crtack  is  given  fort  va-
rious  numbers  of  the  br`anches  o,f  the  star-shaped  crack  as  well   as   the ..
corrtesponding  values  of  the  str`ess  intensity  factors  at  the  tips of the
cracks,  which  are  in  aglteement  with  their  values  already  -found by other
methods.     Extension  of  the  method  of  solution  to  mor`e complicated cases
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of  cracks  with  a  radial  symmetr`y  is  quite  possible.
A5.   Application  5:     Cruciform  crack:    Theproblemof  a  cru-

ciform  cr`ack  in  an  infinite  isotropic  medium  and  with  a  constant  pres-
sure  along  the  edges  of  the  crack  is  considered.    This  prioblem,  in  the
case  of  an  unsymmetrical  cr`uciform  crack,   is  reduced    to   a   system    of
singular  integr`al  equations  along  the  two  ar`ms  of  the  crack,  which    is
simplified  to  one  singular  integral  equation  in  the  case  of a symmetrti-
cal  cr`ucifor`m  crack.     These  equations  are  solved  by  the modified Gauss-
Legendre,  the  Gauss-Chebyshev  and  the  Lobatto-Chebyshev    methods.     The

distribution  of  the  dislocation  function  along  the  crack  is   given   for
valiious  patios  of  the  lengths  of  the  al`ms  of  the  crack  as  well   as   the
cortl`esponding  values  of  the  stress  intensity  factors  at  the  tips of the.
crack  ,  which.are  in  agreement  with  their  values  already  found byother
methods.     Extension  of  the  method  of  solution  to  more complicated cases

/

of  inter`secting  cracks  is  quite  possible.
A6.  Application  6:     Edge  crack  in  a  half-plane:Thepr`ob-

lem  of  an  edge  crack  normal  to  the  boundary  of  an  isotropic  half-plane
and  with  a  constant  loading  at  imf inity  and  nol`mal  to  the  crack is con-
sidered.     The  prtoblem  is  reduced  to  a  system  of  two   singular`   integral
equations  along  the  cr`ack  and  the  boundary  of  the  half-plane,  which  is
solved  by  the  use  of  both  the  modif led  Gauss-Legendre   and   the    Gauss-
Laguerre  methods.    The  distr`ibution  of  the  dislocation   function   along
the  boundar`y  of  the  half-plane  and  the  cr`ack  is  given   as   well   as   the
value  of  the  stress  intensity  factor  at  the  tip  of  the  crack,  which  is
in  agreement  with  its  value  already  found  by  other  methods.    Extension
of  the  method  of  solution  to  more  complicated  cases  of  edge   cracks   is

quite  possible.
A7.  Application  7:     Simple  smooth  crack  in  an  infinite

isotropic  medium:    The  problem  of  a  simple  smooth  cr`ack  in an in fin+
ite  isotr`opic  medium  and  with  a  constant  loading  at  infinity is consid-
erted.    The  system  of  two  singular  integral  equations  derived   fort   this

problem  in  section  Al  is  solved  fort  the  cases  of  a  str`aight    crack `  as
well  as  an  arc-shaped  cl`ack, by  the  use  of  the Lobatto-Chebyshevmethod.
The  distribution  of  the  dislocation  functions  along  the  criacks isgiven
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as  well  as  the  values  of  the  stress  intensity  factors  at  the  tips    of
the  cracks,  which  ar`e  in  agreement  with  theiri  theoretical  values.   Ap-
`plication  of  the  method  of  solution  to  any  case   of   a    simple    smooth

crack  in  an  infinite  isotropic  medium  is  quite  possible.
A8.   Application  8:     Branched  crack:       The   'problem    of    a

br`anched  crtack  in  an  infinite isotropic medium and with a  constant load-
ing  at  infinity  and  normal  to  the  branched  crack  is   considered .     The

problem  is  reduced  to  a  system  of  three   singular   integr`al    equations
along  the  composite  crtack,     which  are  solved  either`  by  the  use of both
the  modif led  Gauss-Legendr`e  and  the  modif led  Lobatto-Legendre  methods

or  by  the  us`e  of  only  the  modified  Lobatto-Legendr`e    method    together

with  two  obvious  conditions  at  the  point  of  br`anching of the main cr`ack.
The  resulting  values  of  the  stress  intensity  factors  at  the thr`eetips
of  the' composite  crack  are  given  and  are    in    satisfactor'y    agreement
with  their. experimental  values  since  no  theoretical  values   have   been
derived  for  this  pr`oblem.    Extension  of  the  method  of  solution  to  any

pr`oblem  of  cr`acks  emanating  from  a  common  point  is  quite  possible.
A9.  Application  9:     Row  of  parallel  semi-infinite'  pe-

riodic  Cracks:     The  plioblem  of  a  r`ow  of  paliallel  semi-infinite  pe-
riodic  cracks  in  an  infinite  isotr`opic  medium  and witha constant pr`es-
sulie  applied  along  the  edges  of  the  cracks  is considered.    The  problem
is  reduced  to  a  singular  integral  equation  along   one   of  the    cr`acks,
which  is  solved  by  the  modified  Gauss-Hef`mite  method.      The   distribu-

tion  of  the  dislocation  function  along  the  cracks  is  given  as  well  as
the  value  of  the  stress  intensity  factor  at  the  tips   of   the    cracks,
which  is  in  agl`eement  with  its  value  already  found   by   other`  methods.
Extension  of  themethod of  solution  to  morte  complicated  cases   6f   rows

of  semi-infinite  pel`iodic  cracks  is  quite  possible.
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I.    rENIKOTHTEE

`H   ®ecopta   Tfie   'E^aoTilt6TTiToe,   u€   €(papuoyde   Tfis        6Ttotae

ete   lTpoB^fiuaTa  ocDudTcov   ueTd   pcoyu@v   doxo^obuet}a   eLs   Tfiv   Tta-

poooav   €pyaotav,   €xel   LOToptav   5v6s  Tt€ptTtou  aL@vos,   d^^'   fi
€VToVoS   dvdTtTUEts   TT|S   €^aBe   xd>pav   MaTd   Td   Te^euTata   Teooa-

pdltovTa   €TTi,   "aTd   Tfiv   6idpMeiav   T@v   6TtotcDv  6Tte^tisTioav Tt^et-
oTa  TtpoB^fiuaTa   T6oov   Sea)pT|Tiltot}   6oov   wac   TtpaMTLItot)      €v6ia-

ap€povTos,   ueTaEb   T@v   6Ttotov   ttat   TtpoB^fiuaTa  ocoudTov u€Td pco-

y Trfev .

Td  TtpoB^huaTa,   u€   Td  6Ttota  Sd  doxo^T|S@uev   eLc   Tfiv     TLa-

poooav   €pyaotav   Mat   T@v   6Ttotov   Sd  TtpooTLasT|ocouev   vd   eopcouev
Tds   }boeis   fi   TotJ^dxioTov   vd  tJTto6etEou€v   yeviltds        ue866ouc
dvTiueTOTttoeoe,   dapopot)v   ete   Tfiv   eUpeoLv   T@v   Tte6Ccov   T@v   Td-

oecov   ltat    T@v   ueTaTOTttoecov   €vT6s   TT€TtepGou€vcDv   f|   dTtetpcov   oco-

udTov   ueTd  pcoyu@v   d^^.    etJpioJtou€vov   ete   MaTdoTaoiv      €TtiTt€-
6ou  ltaTouovfioecoe.   Tot}To   onuatvei   6TL   Td  ocbuaTa  Tat)Ta  €tvai

ecTe   dTtetp®e   uiltpoo   Ttdxoue   €ItT€iv6u€va  u6vov   ltaTd   Td§     6Uo
6iaoTdoeie,   ate   €xouev   Tfiv   TteptiTTooiv   Tfi§   €iiiTt€6ou   €vTaTi-

Itfis  ltaTaoTdoeoc,   ecTe   dTtetpoe  ueyd^ou  Ttdxous        €wTeiv6ueva
Mat   waTd  Tde  Tpete  6iaoTdoeie,   d^^d  u€   6pLa     ueTaBa^^6u€va

u6vov   MaTd   Tde   6bo   6uTci&oTdoeie   Mat   dveF,dpTTiTa   Tfie  TptTTie 6i-
aoTdoeoe,    ate   €xc>uE:v   Tfiv   TteptTTTcooiv   Tfie   €TtiTT€6ou      TtChpaTj.op-

apcooic"fis   "aTaoTdoeoe.   rldvTcoe   fi   6LaTtpayudTeuoie        duapoT€pov
Ta5v   TtepiTtTchoecov   TobTcov   etvaL   6uota.

IIepaiT€pcD   6ex6uesa   6Ti   €Ttt   T@v   Tux6v   t)Ttapx6vTcov      6ptcDv

T@v   Seopouu€vcov   ooudTov   dDs   ltat   €Tt.    duapoT€pcov   T@v        Tt^eup@v

T@v   poyu@v   6t6ovTou   fi   aL   ouvi,oTtT)oou   T@v   €EcoTepilt@s   €TtiBa^-

^ou€vcov   Tdoecov,   MdseTos   ltat   6iaTunTiltfi,   ate   ^€youev   6TL   €-

xouev   Tfiv   TteptTtTcooiv   Too   Ttpd>Tou   Seue^Lcb6oue   TtpoB^fiuaToe,   fi

ai   tJtpioTduevai   u€TaTOTttoeie,   6Te   ^€youev   6Ti   €xouev TfivTte-

ptiTTcooiv   Tot}   6euT€pou   Seue^id>6ous   iTpoB^iuaTos,   fi   T€^os   eTtt
Tivcov   u€v   6ptcov   Too   od>uaTos   aL   ouvioT@oou   T@v  eEcoTeoilt@e  €-

TtiBa^^ou€vcov   Tdoeov,    €Ttt   6€   T@v   bTtoiotiTCDv   6ptcov   Tot}      od>ua-
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Toe   ciL   btpioTduevai   ueTaTOTttoeLe,   6Tc   ^€vou€v   6TL   €xouev   Tfiv

iieptiiTCA]oiv   Too   uiMToO   S€ue^ich6ous   TtpoB^fiuaToS.   Auvduesa   Be-

Batcoe   vd  S€copficoucv   Mat   d^^cov   Tbiicov   6pLawd§   ouvsfiMa§,  Tddv-
TtoTOLxa   6ucDe   npoB^fiuaTa   e[vau   6^iyd>Tepov   ouvfisn   T@v     TPL@v

iiponyouu€vcoe   dvaq>eps€vTcov.

ALd  Tfiv   €nt^uoiv   T@v  npoavatpeps€vTcov  "poB^nudTaJv sd xpn-

oLuoTtoifiocou€v   Thv   ®ecDptav   Tfie    'E^aoTiM6TnToe,   flTie   €xei      d)a

BdoLv   T6v   v6uov   Tot}   HOOKE,   Maid   T6v   6notov   aL  ouvL`oTdiocw  Tdiv
Tdo€cov   Mat   aL   ouvLOTdioaL   Td}v   iTapauopapdtoecov,  at'TL'vee baptoTav-

Tou   €vT6§   €v6e  u€oou,   o`jv6€ovTai   6id  ypquuiMdiv  ox€oecov.      `H
®E:copta   Tfie    'E^aoTLM6TTiToe   6t6ei   cmuavTLM@§         hTt^oTT.oiTiu€voue

TbTtou§,   6Tav   €apapuoosii   ete   €Ttt"e6a  TtpoB^fiuaTa,   d)s   Td  €vTao-
Sa  €EeTaosT|o6ueva.

ALd   Tfiv   €nt^uoiv   T@v   iTpoB^TiudTa]v   Tfie   €TtLn€6ou      .E^aoTl-

M6TTiToe   6bvavTaL   vd   xpTioiuonoLnsot}v   6LdapopoL   u€So6oi.          'EM

TobTcov   f`   Tt^€ov   woLvfi,    Thv   biiotav   Mat   diTott^cLOTiM@§   MaTCDT€pco

Sd  xpTioiuoiioLfiocouev,    etvaL   f`   BaoiEou5vTi   €Ttt   Tfie  Sca]ptas   T@v

uLva6lM@v   ouvapTfio€cov   Mat   €iiL6Ld>t4ouoa   T6v  npoo6lopLou6v   6bo

uLya6LMdiv   6uvauiMG5v,   ouvapTfioecov   Tfi\e   S€oe®e   €vT6e   Too      eMd-
oTOTe   S€copouu5vou   ochua.Toe   Mat   uE:TaBaMou€va)v   BeBa[cos     u6VoV

MaTd  Tds  6bo  6iaoTdoei§,   Mas.   6oov   Td  €EeTaE6u€va       €vTaosa
TtpoB^fiuc„a   €SecopfisT|oav   €Tt tne6a.

Abvc„cLL    vd    oT"eia]Sfi   choabTcoe   6Ti   6Ld   Tfie     Ttpoavatpepset-

oTie   uE:$66ou   T@v   uLya6LMdiv   6uvauiMdiv   €xei   ^mpsfi   T6   ueva^bTe-

pov   u€pos   T@v   diioT€^€oudTcov   Tfis   ®ecoptae   Tfie   €TtiTt€6ou      'E^a-
oTilt6TnTo§. uETepou   6La6€6ou€vaL   u€So6oi   €Tti^boecoe   TtpoB^nud-

Tcov   Tfi§   ®ecoptae   Tfie   €niTt€6ou   'E^aoTLM6TTiTos   etvaL   f`   u5So6oe

Tdiv   6^oM^np®Tittdiv   u€TaoxTiuaTLoudiv,   d]e   6 u€TaoxnuaTLou6e FOU-

RIER  wac   6   ueTaoxT|uaTLou6e  MELLIN,   Mat   fi   u€So6oe   Td}v     nelle-

paou€vcov   oTOLxetcov. 'EM   TobTCA]v   h   nod)Tn   Ttapo`)oLdE€L  Td u€iov€-
MTfiuaTa  6Tl   ete   uiMp6v   u6vov  dpisu6v  TtpoB^TiudTcov   6bvaTaL   vd

€apapuoosfi   Mat   6Ti   €tvaL   Tto^bTt^oMos,   €v¢  h   6euT€pa  napouoLd-

E€i   T6   u€iov€MTnua6Ti  etvaL   €vT€^die   dpL8uTiTiwh   u€So6oe     t4at

uLwpd§   dMplBeta§.
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2.    |TEN|KAI   r[APAITOMHAI

H€pav   T@v   TTapaTtouTtdiv   T@v   6L6ou€vcov   €ts   €WChoToV         Tufiua

Tfi§   Ttapobone   ue^ETne   Mat   dtpopcDo@v   ete   Td   €Ttt   u€pous   €E€Ta-

E6u€va  S€uaTa,   6uvdu€Sa  vd  dvatp5pcDUE:v   Mat   chpiou€vas     yevL-
Itoo   xapaltTfipoe   6pyaotae,    T6   Tt€pL€x6u€vov   T@v   6TTotcDv   €^fi(.DSTi

tjTt.    6iLjiv   waTd   Tfiv   ouyypaapfiv   Tfie   TtapouoTie   u€^€Tnc.

ObTco,   ueTaEb   T@v   yevLMoO   €v6iatp€povToe ouyypauudTcov T@v

dva(o€pou€vcov   eie ~Tfiv   t}eoptav   Tfis   €^aoTLIt6TTiToe   6uvduesa  vd

dvaq)5pouev   Td   T@v   TIMOSHENKO   and   GOODIER   {1970} ,LANDAU   and

LIFSHITZ    {1970},    SOLOMON    {1968},    ®EOXAPH    {1970}    Itat    LITTLE

{1973}.   H^etovae   TtapaiiouTtdc   €t)ptoMouev   ete   T6        €v6Lat.p€pov

&pSpov   Too   TEODORESCU   {1964}.    H€pcwT€pco,    f\   €vTaosa      xpT|oL-

uonoiouu€vn   u€So6oe   TG}v   uLya6iM@v   6uvauLt4tbv        dvaTtTbooeTaL
eie   Td   ouyypduuaTa   TG)v   MUSKHELISHVILI    {1953A},   GREEN         and

ZERNA    {1968},    MILNE-THOMSON    {1968}    MQt    EITGLAND    {1971A}       cos

ltat    eic   Td   dpspa   T@v   MUSCHELISVILI    {1933},    STEVENSON  {1945}

Mat   TIFFEN    {1952}.    Et6LMd>Tepov,    f`   Sccopta   Tfie   €TtLn€6ou   €^a-

oTLM6TTiToe   6id   Tfiv   TtcptTtTcooiv   dvLooTp6ncDv   u€ocov   dvaTtTboo€-

Tai    €ie   Td   ouyypduuaTa   Tdiv   LEKHNITSKII   {1963,1968},      SAVIN

{1961}    Mat    rAAIAAKH    {1968}.
'Etpapuoyde   Tfie   sE:coptae   Tfie   €TtLTt€6Ou   €^aoTLM6TnToe         ete

TtpoB^fiuaTa   pcDyu@v   ebp[c"ouev   €ntoTie   €te   T6   obvypauua        Tdiv

SNEDDON   and   LOWENGRUB    {1969},    T6   &pSpov   Tot)   HAHN    {1970},Thv

ou^^oyfiv   &pSpov   Tot}   SIH   {1973},    Ttiv   €pyaotav  Tot)  IQAKEIMIAH

{1973}  wac    T6   €yxeipt6iov   T@v   TADA,    PARIS   and   IRWIN    {1973},

€L§   T6   6Ttotov   bndpx€L   Mat   ii^hpT|s   ocipd  llapaTtouTtdiv   ox€TLMdiv

u€   T6v   Ttpoo6iopLou6v   T@v   ouvTe^€oT@v   6vTdo€cos   T@v         Tdo€ov
eie   Td   dMpa   pcoyu@v,    otTLvee   6E   Ttp€ii€i   vd   ouyx€covTaL  u€  Tot>e

ouvTe^eoTdc   ouywevTpchoecoe   Tdo€cov   €te   u€oa  dveu   pcoyu@v,   iic-

pt    T@v   6iiotcov   dvaap€pouv   oL   NEUBER   and   HAHN    {1966}       Itat         6

PE±.ERSON    {1974}.

ALd   T6v   Tt€LpauaTLM6v   iipoo6iopiou6v   Tdiv   ouvTc^eoT@v   €v-

Tdo€oc   T@v   Tdoecov   eLc   Td   di4pa   pcDyu@v   f\   TT^€ov   €lTLTuxdis   XPT1-
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0LuoTtoLoUu5VT|   u€8o6os   etvou   h   u€So6oc   TG5v   ltauoTiM@v   fl   dva-

nTuxsetoa  bii6   Too   THEOCAP`IS   {1970}   Mat   €tpapuoos€toa           €te

Tt^etoTa   TtpoB^huaTa   pcoyu@v   t)TT6   Tot}   THEOCARIS ,   ot)vouiv         T@v

6Ttota]v   ettptoMouev   ete   T6   dpspov   Tot}   THEOCARIS   {1972},         d]s

ltat   t)Tt6   T@v   THEOCARIS   and   JOAKIM_IDES  {1971}  Itat  rAOYTOY  {1973}.

IIepaiT5pco,   ueTaEb   TG;v   dvatpepouo@v   yevLwde   iLe$66ous      €-

iTi^boecos   T@v   iipoB^nudTcov   Tfie   €TtiTt€6ou   €}aoTilt6TnTos      €pya-

oL@v   6uvduesa   vd  dvaap€pcouev   Td  &pspa   T@v   LAURICELLA   {1909},

BESKIN    {1944},    RAUSCH    {1966},    FINE   and   NILSON    {1966},    RIZ-

ZO    {1967},    OLIVEIRA   {1968},    SEGEDIN   and   BRICKELL          {1968},

BENJUMEA   and   SIKARSKIE   {1972}   Itat   BOWIE,    FREESE   and        NEAL

{1973},    eie   Td   6T[ota   6ucoe   6€v   dvTiu€TOTttEeTou   MaTd        Bdoiv

T6   np6B^T|ua   Too   u€Td  Pcoyu@v   u€oou.
uOoov  dtpop¢  T€^oe   ete   T6  uasnuaT"6v  u€poe   Tfie  napoboTie

€PYaotast    €y€veTo   xpfiois   T@v   ouyypauudTov  T@v AHLFOP.S  {1966},

PHILLIPS    {1957,1966}    Mat   NEVANLINNA   and   PAATERO    {1969}    €Ttt

T@v   ulya6lltG5v   ouvapThoecov,    T@v   ouyypauudTcov  TG5v MUSKHELISH-

VILI{1953B},    TRICOMI    {1957},    MIKHLIN    {1957},    GAKHOV   {1966},

POGORZELSKI    {1966}    Itat    DELVES   and   T'JALSH    {1974}    a)c   ltat       Tot)

&pSpou   Tot}   T'`JOODS    {1971}    €Ttt    TG5v   6^o"^TipoudTcov   CAUCHY         wac

T@v   6^olt^npoTiltciv   €ELod>o€ov,    T@v   ouyypauudTov   T@v   HASTINGS

{1955},    RAINVILLE    {1960},    ABRAMOT`JITZ    and   STEGUN    {1965}    that

BELL   {1968}    6Ttt   6iChcD6pcov   TtapouoiaEou€vov   €t6ilt@v      ouvapTfr

oeov,    Tot}   ouyypduuaTos   Tot}   FORD   {1957}    €iTt   attTou6papcov   ouv-

apTfioea)v,    TG}v   ouyypauudTov   TG5v   MINEUR   {1952}  ,          HILDEBRAND

{1956},    KOPAL    {1961}    Mat    RALSTON    {1965}    €Ttt   SeudTov         dpi-

SuTiTiMfic   dva^t)oecoe   "at   ei6LitchTepov   dpLSunTiltfie   6^o"^Tipcboe-

coe,    Gis   Tfiv   6Ttotav   dTTolt^€ioTilt@s   dvatp€povTaL   Td   ouyypduua-

Ta   T@v   STROUD   and   DON   SECREST    {1966}    Mat   DAVIS   and   RABINO-

WITZ    {1967},    Itat    T@v   ouyypauudTcov   T@v   SZEG6   {1959}  Mat  TRI-

COMI    {1961}    ETtt    6psoycDvtcov   Tto^uovbuov.
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3.    EIII    TQN   OAOKAHPQ,tyIATQN   TYHOY   CAUCHY

E6peta  xpfioLc   ytv€Tou   etc   Ttiv   Ttapot)oav   ue^€Tr\v   T@v     6-

^olt^npoudTcov   TtiTtou   CAUCHY   Tfie   uopapfic:

a,z,  -±`L=::idT  ,                                                         (1,
€vsa   L   It^eloTfi   fi   dvoiltTfi   ltauTtt5^T|   €Ttt   Tot}   uiya6Lwot}      €TtiTt€-

6ou   z.
•Edv   T6   oTiuetov   z   6Ev   dvfiwn   ete   TTiv   wauTttJ^nv   L,    €TtapMhs

ouvsfiMn   tJTtdpEecoe   Tot}   6^oM^ripcbuaToe    (I)    etvai   vd   ctvaL            fi

ouvdpTnoie   q>(t)    T@v   oTiuetov   t   Tfie   ltauTtb^nc   L   6^oJt^npd>oiuos

ttaTd   Tfiv   €vvoiav   Tot)   RIEMANN  d>c   Ttp6e   t   €vT6c   TtavT6s   Tuf\ua-

Tos   Tfis   MauTtb^T|c   L   ufi   lTepi^auBdvovTos   oT|u€t6v   TI   TabTTle   Ck

(k =  I,2 ,..., in)  ,   Ttapd   T6   6Ttotov   f\   ouvdpTnois   ap(t)    TtapouoLd-

EeL   dosevfi    L6iouopaptav   Tfis   uopapfic,   {MUSKHELISHVILI    ,19538,

§10)  :

I(p(t)   I  ±

Ck

t-ck , chk
J    Ck'°/    0<ak<l    t    k=l,2 ,..., in.   (2)

`0   dpISu6s   in   TG5v   onuetov   Ck   TTp5Tt€i   6TtcDo6hTLOTe   vd   €tvaL   Tte-

Ttepaou€vos .
'Edv   dvTis€Tcos   T6   Onuetov   z   OuuTttTtTn   u€   €v   TG5v      OTiu€tcDv

t   Tfie   MauTtb^Tis   L   Tt^fiv   Tux6v   ttTtapx6vTcov   dltpcov   at>Tfie,    T6      6-

^OIt^fipoua    (I)    €v   y5vei   6€v   €xeL   €vvoLav.    Ets   Thv      TT€piTtTo-

oiv   TabTTiv   6ptEou€v   Thv   ouvdpTTioLv   @(t)    d>e  {M.USKHELISHVILI,

19538,     §12}:

@(t)  = i:ZLft#dT  J                                               (3)

€VSCh   ft   etvaL   T6   Tufiua   Tfie   ltauTtb^ns   L   T6   TTepLex6uevov   €vT6s

uLItpot}   Ittm^ou   lt€vTpou   t   ltat   dwTtvoc   €   Seopouu€vTis      T€Lvob-
oTis   Sis   T6   uTi6€v. `IItavfi   oi>vsfiwn   ttTTdpEeoe   Tot}   6^ow^npchuaToc

(3)  ,    T6   6iTotov   dTtoT€^et   Tfiv   Muptav   TLuhv   Tot)   6^ow^r\pchuaToe

CAUCHY   6id   Td   €ooTepLwd   onTj,eta   t   Tfis   ltauTLt>^ns   L   €tval            fi

ii^fipooie   ttTt6   Tfie   Ttuwv6TnTos   ap(t)    Tot}   6^olt^npd>uaToc      CAUCHY

(I)    Tfis   yev"€uu5vTic   ouvsfiltTie   H6LDER    (H*)    €Ttl   Tfis   wauTtb^r\e
L   {MUSKHELISHVILI,19538,    §29,§77}.    TabTTiv   SdseopG;u€vll^T|-
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pouu€vTiv   iidvTOT€   tjn6   Td}v   nu]tvoTfiTcov   ap (t)    6^oM^TipcoudT®v CAU-

CHY   Tile   uopapfie    (1)  .

rlcpaLT€p®  6bvaTaL   vd  6€ixsfi   6Ti   aL   6piawat   Tiuat   ®±(t)
Tfie   ouvapTfioecoe   ®(z)    6id   z   T€tvov   €ie   8v   oTiuE:tov   t TfieMau-

nb^Tie   L   €M   Tfi§   uL&e   fi   Tfie   €T€pae   n^€upde    (+   fi   -)    TabTTie   b-

aptoTavTai   tjn6   Tde   TTpoavcxpeps€ toae   Ttpoi)Ttos€OE:Le   wac   n^npoov
Tote   Tbnoue   Too   PLEMELJ   {MUSKHELISHVILI,19538,    §17}:

a+(t)-®-(t)    -q,(t)    ,   a+(t)+a-(t)    =   2®(t)    ,                     (4)

€vsa  fi   ouvdpTTioie   ®(t)    6ptEeTaL   waTd   T6v   Tbnov    (3)  .

Ald  Td  npoB^fiuaTa  Td  €ECTaE6ueva  €ie   Tfiv  T[apoooav  6ia-
TPLBfiv   ob66^a]e   €v6Laap€pouv  at   Tiuat   ®(t)    Tfie        ouvapTfioea]e

+®(Z)    €nt   Tfis  wau"b^Tie  L,   d^^d  u6vov  at   6pLaltat   Tiuat   ®-(t)
Tfis   ouvapTfioecos   ®(z)    napd   Tde   iT^€upde   Tfie   wauTtb^Tie   L.       `Qc

€t4   TobTou,   Sd  fi6bvaTo   vd  Secopnsfi   6  6€bT€poe   TbTtoe   Too  PLE-

MELJ  che  6piou6e   Tfie   ouvapTfioecoe   ®(t)  ,   title  waTd  TaoTa        t-
ooOTaL   u€   T6v   u€oov   6pov   T@v   6pLaM@v   Tiu@v   a+(t)    wac   a-(t),

6n6T€   6   TbTto§    (3)   Sd  fi6bvaTo   vd  dno6eLxsfi   d)§   ouv€TteLa     Too

6€uT€PoU   T@V   TbTtcov    (4)  .

rl€paLT€pco   xpTioLuoTtoLot)vtol   €vtoT€   Mat   at   T[pd5Tai      Ttapd-

y®yoL   T@v   ouvapTfioecov   ®(z)    Tfie   uopapfie    (i)    6L66uevaL  bn6ToO
Tbnou :

®'(Z)   =  ±jLi:f.+dT  J                                                         (5)

€tp'   6oov   T6   oTiuetov   z   65v   dvfiw€i   ele   Tfiv   MauTtb^nv   L.         Et§
Tfiv   lie:ptnTCDoiv   TabTTiv    Lwavfi   ouvsfiMTi   tjTtdpEecoe   Tdiv         6piaMdiv

TLu@v   ®'±(t)    nChpd   Tfiv   Maunb^nv   L   E:[vou   fi   n^fipcooLe   tJn6      Tfie

nQpaycbyou   ap'  (t)    Tfie   ouvapTfioccDe   ap(t)    d>e   Ttp6s   t  Tfie y€vLMeu-

u€vTis   ouvsfiltns   H6LDER    (H*)    €Ttt    Tfis   itauTtt^Tie   L   {GAKHOV,1966,

§44}.uooov   dq>op¢   eie   Tds   Tiude   ®'  (t)    Tfie   ouvapThoccoe   @'  (z)

6Ld   Td   oTiij,eta   t   Tfie   wauTtb^Tie   L,    Tt^fiv   T@v   &Mp®v   TabTTie,   a6-

TaL   6ttvavTaL   vd   6pLoSoOv   BdoeL   Too   6€uTepou   TG5v   TbTtcov      Tot}

PLEMELT    (4)    ud^^ov   fi   Bdoei   Tbnou  dva^6you   Too    (3),Mas'6oov

6   Te^E:uTato§   o6Toe   6€v   Sd   €[x€v   €vvoLav,   ii^fiv   €dv   ap(t)  =  0.


