
DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS

THE NATIONAL TECHNICAL UNIVERSITY OF ATHENS

TECHNICAL REPORT, 10 MAY 19771

A new method for the solution
of the problem of a star-shaped crack
in an infinite isotropic elastic medium

Pericles S. Theocaris and Nikolaos I. Ioakimidis

Department of Theoretical and Applied Mechanics,
The National Technical University of Athens, Greece

Abstract The problem of a symmetrical and symmetrically loaded star-shaped crack in an infinite
isotropic elastic medium and under conditions of generalized plane stress or plane strain can be
solved by reduction to a complex Cauchy type singular integral equation on one of the branches of
the crack. The numerical solution of this equation is achieved by its reduction to a system of linear
algebraic equations resulting by its application at appropriately selected points of the integration
interval and the subsequent use of a modified form of the Gauss numerical integration rule for the
approximation of the integrals appearing in this equation.
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Fig. 1: A star-shaped crack in an infinite medium

1. Introduction

The problem of a symmetrical star-shaped crack with N branches of length a (as is the crack of
Fig. 1) lying in an infinite isotropic elastic medium under generalized plane stress or plane strain
conditions and loaded in the same way on all its branches has been already investigated by using
different methods.

Thus, Westmann [1] solved the above problem in the case of a constant pressure distribution
on the branches of the crack. Next, Srivastav and Narain [2] solved the same problem in the case
of an arbitrary pressure distribution on the branches of the crack by using the Mellin transform.
Westmann [1] also used the Wiener–Hopf technique for the determination of the stress intensity
factor kI at the end of each branch of the crack whereas Srivastav and Narain [2] reduced the whole
problem to the solution of a Fredholm integral equation of the second kind. These methods of
solution of the problem of a star-shaped crack are also described in Refs. [3] and [4]. The case
of an arbitrary pressure distribution on the branches of the star-shaped crack was also studied by
Williams [5] by using the Wiener–Hopf technique. Finally, for the solution of the problem under
consideration Kutter [6] proposed the use of the method of complex potentials of Muskhelishvili in
combination with the conformal mapping of the star-shaped crack of Fig. 1 on the unit circle.

Although all the aforementioned methods of solution of the plane problem of the star-shaped
crack in an infinite isotropic elastic medium lead to the correct solution of this problem and to
the determination of the stress intensity factor kI at the tips of the branches of the crack with a
satisfactory accuracy, nevertheless, they present the disadvantages on the one hand that they make
use of complicated algebraic transformations and on the other hand that by no means are they
generalizable to the case where the branches of the star-shaped crack are not straight but curvilinear.

Here a direct, easy-to-use and very efficient method of solution of the problem under consid-
eration is proposed. This method is based on the method of reduction of the plane problem of a
system of straight cracks in an infinite isotropic elastic medium to a system of Cauchy type singular
integral equations proposed by Datsyshin and Savruk [7, 8]. Although Datsyshin and Savruk con-
sidered only the case where the straight cracks do not have common points [7, 8], nevertheless, it is
easily observed that even in the case where the straight cracks under consideration have a common
point (as is the case in Fig. 1 with the branches of the star-shaped crack shown there), the method
proposed by them remains valid. Finally, the whole problem is reduced to a complex Cauchy type
singular integral equation on one of the branches of the crack, which can be numerically solved
by using a method based on the Gauss numerical integration rule for the first time proposed by the
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Fig. 2: A system of straight cracks in an infinite medium

authors [9].
Finally, it can be remarked that in the case where the branches of the star-shaped crack of Fig. 1

are curvilinear, the method presented here can easily be generalized to this case by taking into
account the approach described in Ref. [10] for the construction of the singular integral equation to
be solved but with the numerical technique used here remaining unchanged.

2. The singular integral equation

For the reduction of the problem of the star-shaped crack of Fig. 1 to a singular integral equation
the star-shaped crack can be considered consisting of N straight and concurrent cracks, which are
its branches.

The use of the method of reduction of the plane problem of a system of N straight cracks Ln
in an infinite plane isotropic elastic medium (Fig. 2) to a system of singular integral equations
proposed by Datsyshin and Savruk [7, 8] is already possible. Hence, the system of cracks of Fig. 2,
each of which is assumed loaded by a normal and a shear loading in an arbitrary but the same way
on both its edges, leads to the following system of Cauchy type singular integral equations [7, 8]:

N

∑
k=1
−
∫ bk

ak

[
g′k(t)Knk(t,xn)+g′k(t)Lnk(t,xn)

]
dt = π[σn(xn)− iτn(xn)],

an < xn < bn, n = 1,2, . . . ,N. (1)

Here g′k(t) (k = 1,2, . . . ,N) are the unknown functions to be determined on the N cracks. These
functions can be assumed proportional to the dislocation densities on the cracks Ln. Next, σn(xn)
and τn(xn) are known functions denoting the distributions of the normal and shear loadings, re-
spectively, on the nth (n = 1,2, . . . ,N) crack in a local coordinate system Onxnyn (Fig. 2) attached
to the crack Ln. Finally, the kernels Knk(t,x) and Lnk(t,x) are known and they are given by the
relations [7, 8]

Knk(t,x) =
eiαk

2

[ 1
Tk−Xn

+
e−2iαn

T̄k− X̄n

]
, (2)

Lnk(t,x) =
e−iαk

2

[ 1
T̄k− X̄n

− Tk−Xn

(T̄k− X̄n)2 e−2iαn
]
, (3)

where αk (k = 1,2, . . . ,N) is the angle formed between the Ox-axis and the Oxk-axis (the direction
of the kth crack), as is shown in Fig. 2, and Tk and Xn are the quantities

Tk := teiαk + z0
k , Xn := xeiαn + z0

n, k,n = 1,2, . . . ,N. (4)
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In these last relations, we have put

z0
k := x0

k + iy0
k , k = 1,2, . . . ,N, (5)

where x0
k and y0

k are the coordinates of the point Ok (the centre of the local coordinate system Okxkyk)
with respect to the global coordinate system Oxy (Fig. 2).

Moreover, in the case of N separate straight cracks (as is the case in Fig. 2), the system of singu-
lar integral equations (1) should be supplemented by N integral conditions assuring the uniqueness
of single-valuedness of displacements around each crack. Nevertheless, it is evident that for the
star-shaped crack shown in Fig. 1 because of the assumed symmetry both in the geometry and
in the loading, the condition of single-valuedness of displacements around the whole star-shaped
crack is automatically satisfied and, therefore, we do not have to take it into account here.

As far as the complex potentials Φ(z) and Ψ(z) of Muskhelishvili [11] are concerned, on the
basis of which every stress or strain quantity can be determined on the whole cracked plane [11], af-
ter the determination of the unknown functions g′k(t) (k = 1,2, . . . ,N) these potentials are expressed
as [8]

Φ(z) =
1

2π

N

∑
k=1

∫ bk

ak

g′k(t)
t− zk

dt, zk = xk + iyk, (6)

Ψ(z) =
1

2π

N

∑
k=1

e−2iαk

∫ bk

ak

[ g′k(t)
t− zk

−
T̄k eiαkg′k(t)
(t− zk)2

]
dt, zk = xk + iyk. (7)

At this point we should mention that another method to tackle the problem of interacting straight
cracks in an infinite plane isotropic elastic medium, which is similar to the aforementioned method
of Datsyshin and Savruk [7, 8], was proposed by Pučik [12]

Now we can apply the above approach to the star-shaped crack of Fig. 1 assuming it consisting
of its N straight branches. Because of the symmetry in geometry and in loading, it is obvious that
the functions g′k(t) will have the same distribution on all the branches of the crack. Therefore, they
can be considered as a single unknown function g′(t). Moreover, the satisfaction of one of the
singular integral equations (1), let us assume that concerning the branch with k = 1 lying on the
Ox-axis (Fig. 1), ensures the satisfaction of the remaining N−1 singular integral equations (1) on
the remaining branches of the crack.

In the case of the star-shaped crack under consideration, it is also appropriate to choose the
local centres Ok of the coordinate systems on each branch of the star-shaped crack so that they
coincide with the apex O of the star-shaped crack, which is also the centre of the global coordinate
system Oxy. Then we have

αk =
2π

N
(k−1), Tk = tεk−1, Xn = xε

n−1 with ε := e2πi/N . (8)

Moreover, the kernels Knk(t,x) and Lnk(t,x) appearing in the system of singular integral equa-
tions (1) and determined on the basis of Eqs. (2) and (3), respectively, will be given by the formulae

Knk(t,x) =
1
2

[ 1
t− xεn−k +

ε2(k−n)

t− xεk−n

]
, (9)

Lnk(t,x) =
1
2

[ 1
t− xεk−n −

t− xεn−k

(t− xεk−n)2 ε
2(k−n)

]
. (10)

Now, as was described above, we have to solve the singular integral equation

−
∫ a

0
[g′(t)K(t,x)+g′(t)L(t,x)]dt = π[σ(x)− iτ(x)], 0 < x < a. (11)
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Here a is the length of each branch of the star-shaped crack, σ(x) and τ(x) are its normal and shear
loading, respectively, and the kernels K(t,x) and L(t,x) can result from the formulae

K(t,x) =
N

∑
k=1

Knk(t,x), L(t,x) =
N

∑
k=1

Lnk(t,x). (12)

We further take into account the formulae [13]

N−1

∑
k=0

1
t− xεk =

NtN−1

tN− xN ,
N−1

∑
k=0

ε2k

t− xεk =
NtxN−2

tN− xN (13)

as well as the formulae resulting by a differentiation of the first of these formulae with respect to x
and of the second of these formulae with respect to t. Then, on the basis of Eqs. (9), (10) and (12),
we find that the singular integral equation (11) takes the form

−
∫ a

0

{
g′(t)

t(tN−2 + xN−2)

tN− xN +g′(t)
[ t(tN−2 + xN−2)

tN− xN −NtN−1xN−2(t2− x2)

(tN− xN)2

]}
dt =

2π

N
[σ(x)−iτ(x)].

(14)
Next, if the unknown function g′(t) is separated into its real and its imaginary parts, i.e.

g′(t) = g′1(t)+ ig′2(t), (15)

the complex singular integral equation (14) is reduced to the following system of two real singular
integral equations:

−
∫ a

0
g′1(t)

t
tN− xN

[
tN−2 + xN−2− NtN−2xN−2(t2− x2)

2(tN− xN)

]
dt =

π

N
σ(x), 0 < x < a, (16)

−
∫ a

0
g′2(t)

NtN−1xN−2(t2− x2)

2(tN− xN)2 dt =− π

N
τ(x), 0 < x < a. (17)

From these equations we observe that when there exists only a normal loading σ(x) along the
branches of the star-shaped crack, the sought function g′(t) is purely real. On the contrary, when
there exists only a shear loading τ(x), this function g′(t) is purely imaginary.

After the determination of the function g′(t) = g′1(t)+ ig′2(t) from the solution of the system of
singular integral equations (16) and (17), the complex potentials Φ(z) and Ψ(z) can be determined
from Eqs. (6) and (7), respectively. For the problem of the star-shaped crack under consideration,
taking also into account Eqs. (13), we find that these formulae take the simpler forms

Φ(z) =
N
2π

∫ a

0
g′(t)

tN−1

tN− zN dt, (18)

Ψ(z) =
N
2π

∫ a

0

[
g′(t)−g′(t)

(N−1) tN + zN

tN− zN

] tzN−2

tN− zN dt. (19)

Finally, we can mention that for the determination of the complex stress intensity factor k∗ at
the tips of the branches of the star-shaped crack we can use the formula [7]

k∗ = kI− ikII =−
√

2 lim
t→a

[
√

a− t g′(t)]. (20)

Because of Eq. (15), this formula is separated into the formulae

kI =−
√

2 lim
t→a

[
√

a− t g′1(t)], kII =
√

2 lim
t→a

[
√

a− t g′2(t)]. (21)
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Table 1
Numerical results for the reduced stress intensity factor kI/(σ

√
a) in the case of loading of the

star-shaped crack of Fig. 1 (with N branches) by a constant normal compressive loading σ

by using the singular integral equation (16) and m = 5 linear algebraic equations

N
kI

σ
√

a
Approximate formula [1] for
N→ ∞ : kI/(σ

√
a)≈ 2/

√
N

Values of kI/(σ
√

a) deter-
mined by other methods

2 0.99989 1.0000 (theoretical value)
3 0.94178 0.9419 [5]
4 0.86366 0.8641 [5]
5 0.79733 0.7976 [5]
6 0.74286 0.7425 [5]
8 0.65889 0.6590 [5]

10 0.59741 0.63246 ≈ 0.61 [1]
15 0.49906 0.51640
20 0.43965 0.44721
30 0.36179 0.36515

3. The numerical solution

For the numerical solution of the real singular integral equations (16) and (17) one can use
the method proposed by the authors and described in Ref. [9]. With the help of this method by
using a modified form of the Gauss numerical integration rule and an appropriate selection of the
collocation points in the singular integral equation to be solved, this equation can be reduced to a
system of linear algebraic equations.

For the application of the aforementioned method the fact that the unknown functions g′1,2(t)
present singularities of order−1/2 near the tips of the branches of the star-shaped crack [7, 8, 14] is
also taken into account. Near the apex O of this crack the unknown function g′1(t) does not present
a singularity as can easily be observed [14]. Therefore, because of the symmetry of the problem as
well, it tends to zero at this apex.

On the contrary, for the unknown function g′2(t) the case when this function presents a logarith-
mic singularity near the apex O of the star-shaped crack cannot be excluded [14]. Such a singularity
can be ignored if we are interested only in the value of the stress intensity factor kII at the tips of
the branches of the crack. In the opposite case, the logarithmic singularity should be taken into ac-
count. For this task it is required that instead of the ordinary Gauss rule used in Ref. [9], a modified
form of the Gauss rule should be used in agreement with the developments of Ref. [15].

In Table 1, numerical results for the reduced stress intensity factor kI/(σ
√

a) are displayed in
the case of loading of the star-shaped crack of Fig. 1 by a constant normal compressive loading σ .
These results resulted by a reduction of the singular integral equation (16) to a system of m = 5
linear algebraic equations and they are in a satisfactory agreement with their values already having
been determined by other methods as is clear from Table 1.

Finally, it can be noted that instead of the Gauss method, the Lobatto method could also be
used for the numerical integrations [9]. In this case, the condition g′1(0) = 0 must also be taken into
account for the completion of the system of linear algebraic equations.
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Summary

Several methods for the solution of the problem of a symmetrical and symmetrically loaded
star-shaped crack in an infinite plane isotropic elastic medium under conditions of generalized
plane stress or plane strain have been developed up to now [1–5]. These methods present the disad-
vantages of requiring lengthy calculations, due to the transform or conformal mapping techniques
used, and of being inefficient to treat the case of curvilinear branches of the star-shaped crack.

Here a new method, based on the developments of Refs. [7, 8], is proposed which reduces, in
a direct manner, the whole problem to a complex Cauchy type singular integral equation on one
of the branches of the crack. This method can easily be generalized to the case of curvilinear
crack branches if the results of Ref. [10] are taken into account. After the numerical solution
of the complex Cauchy type singular integral equation, the complex potentials Φ(z) and Ψ(z) of
Muskhelishvili [11] can easily be determined.

As regards the numerical solution of Cauchy type singular integral equations, the method pro-
posed in Ref. [9] can be successfully used. This method, developed by the authors, consists in
the reduction of a Cauchy type singular integral equation to a system of linear algebraic equations
by applying it at a number of appropriately selected points of the integration interval and using a
modified form of the Gauss (or Lobatto) numerical integration rule for the approximation of the
integrals. As an application, the case of a uniform pressure distribution on the crack branches is
examined. The values of the stress intensity factors obtained in this case coincide with the results
obtained by other methods.


