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1. Introduction

Cauchy type integrals of the form

Φ(z) =
1

2πi

∫
L

w(τ)φ(τ)
τ− z

dτ, (1)

where L is a part [a,b] of the real axis, w(τ) is a weight function defined on the interval [a,b], φ(z)
is an analytic function without poles in a domain Ω containing the interval L and surrounded by

1Both the internal and the external links (all appearing in blue) were added by the first author on 19 March 2018
for the online publication of this technical report.

2These details were also added by the first author on 19 March 2018 for the online publication of this technical
report.
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a closed contour C and Φ(z) is a sectionally analytic function in the whole complex plane except L
are often encountered in problems of mathematical physics.

When the point z is not a point of the interval L, the Cauchy type integral (1) generally exists in
the ordinary sense provided that the function w(τ)φ(τ) does not present strong singularities of the
order −1 or smaller at any point τ of the interval L, but only weak singularities at a finite number
of points of the interval L. On the contrary, when the point z lies on the interval L (denoted by t in
this case), the Cauchy type integral (1) diverges and is usually defined in the sense of the principal
value, i.e. as the limiting value

Φ(t) := lim
ε→0

1
2πi

∫
L−l

w(τ)φ(τ)
τ− t

dτ, t ∈ L. (2)

In this expression, the integral extends on the interval L except a small part l = l(ε) of this interval
contained in a circle of radius ε with the singular point t as its centre.

A sufficient condition for the existence of the integral (2) is that its density w(τ)φ(τ) be a
Hölder-continuous function in the interval L except in the neighbourhoods of its end-points a and b,
where it may present weak singularities. It can also be noticed that when the singular point t
coincides with one of the end-points a and b of the interval L = [a,b], the integral (2) does not exist.

The properties of functions Φ(z) defined as Cauchy type integrals in Eq. (1) were completely in-
vestigated long ago and they can be found in several books, among which we can mention Muskhe-
lishvili’s monograph on singular integral equations [1]. Among these properties, the most important
are the well-known Plemelj formulae relating the limiting values Φ±(t) of the function Φ(z) when
the point z tends to a point t of the interval L from the positive or from the negative half-plane,
respectively, to the value w(t)φ(t) of the density of the integral (1) at the point t and the value Φ(t)
of the function Φ(z) at this point defined in the sense of the principal value. The Plemelj formulae
can be written as [1]

Φ
+(t)−Φ

−(t) = w(t)φ(t), (3)

Φ
+(t)+Φ

−(t) = 2Φ(t) =
1
πi
−
∫

L

w(τ)φ(τ)
τ− t

dτ. (4)

The second of these formulae may also serve as an alternative definition of the value Φ(t) of
the function Φ(z) on the points of the interval L, i.e.

Φ(t) :=
1
2
[Φ+(t)+Φ

−(t)]. (5)

Then the definition (2) of the function Φ(t) as a principal value integral could result as a property
of its alternative definition (5).

For the numerical evaluation of a Cauchy type integral of the form (1) with the point z not lying
on the interval L, it is quite possible to use a numerical integration rule (quadrature rule) for regular
integrals. If we consider such a rule of the form∫

L
w(τ)φ(τ)dτ =

n

∑
k=1

Akφ(τk)+En , (6)

where τk are the abscissae (the nodes), Ak are the weights and En is the error term in this numerical
integration rule, the following formulae are valid [2]

Ak =
2qn(τk)

σ ′n(τk)
, (7)

En =
1
πi

∮
C

φ(z ′)
qn(z ′)
σn(z ′)

dz ′, (8)
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where the closed contour C surrounds the interval L and the functions σn(z) and qn(z) are defined by

σn(z) :=
n

∏
k=1

(z− τk), (9)

qn(z) := − 1
2

∫
L

w(τ)σn(τ)

τ− z
dτ. (10)

It must also be noted that for the points t of the integration interval L the function qn(z) is
defined according to Eqs. (2) or (5) and also that, in general, the selection of the abscissae (the
nodes) τk (k = 1,2, . . . ,n) of the quadrature rule (6) may be arbitrary on the interval L with its
end-points a and b included in this interval.

For a Cauchy type integral of the form (1) and for a point z lying inside the closed contour C
but not on the interval L, obviously, we have to take into account the pole of the integrand at the
point τ = z. Then, following Donaldson and Elliott [2], we will have

2πiΦ(z) =
∫

L

w(τ)φ(τ)
τ− z

dτ =
n

∑
k=1

Ak
φ(τk)

τk− z
−2φ(z)

qn(z)
σn(z)

+En , z 6∈ L, (11)

where
En =

1
πi

∮
C

φ(z ′)
z ′− z

qn(z ′)
σn(z ′)

dz ′. (12)

Now, when the point z of the integral (1) is a point t of the interval L not coinciding with its
end-points a and b, a case which is encountered quite frequently, unfortunately, up to now there has
not been developed a general method for extending the rules of numerical integration so that they
can become applicable to the numerical evaluation of such an integral. Only recently, Hunter [3]
and Chawla and Ramakrishnan [4] extended the use of the Gauss–Legendre and the Gauss–Jacobi
numerical integration rules, respectively, to the numerical evaluation of Cauchy principal values of
integrals.

Here we will extend, in a general way, the methods of numerical integration rendering them
applicable to the evaluation of Cauchy principal value integrals. In this extension, we will use a
method similar to the method already used in Refs. [3] and [4] for the aforementioned numerical
integration rules as well as a new method developed here for the first time and based on the Plemelj
formulae (3) and (4).

Finally, we can remark that the correct definition of the principal value of a Cauchy type integral
is not that given in Refs. [3] and [4] but that given in Eq. (2).

2. Direct method of evaluation of Cauchy principal value integrals

For the evaluation of a Cauchy principal value integral (1) with the point z coinciding with a
point t of the interval L = [a,b] except its end-points a and b and also except the roots τk of the
function (the polynomial) σn(z) defined by Eq. (9), following Hunter [3] and Chawla and Ramakr-
ishnan [4], we consider the following contour integral on the closed contour C surrounding the
interval L (Fig. 1):

I0 =
1

2πi

∮
C

φ(z ′)
(z ′− t)(z ′− z)σn(z ′)

dz ′, t ∈ L, (13)

where the function σn(z) is the polynomial defined by Eq. (9).
By applying the Cauchy residue theorem to this integral I0, we find

φ(z)
(z− t)σn(z)

=
n

∑
k=1

φ(τk)

τk− t
1

(z− τk)σ ′n(τk)
+

φ(t)
(z− t)σn(t)

+
1

2πi

∮
C

φ(z ′)
(z ′− t)(z ′− z)σn(z ′)

dz ′. (14)
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Fig. 1: Geometry of the integration interval L and the contour C

If we replace this expression of the function φ(z) in the integral (1) for a point t of the interval L,
we obtain

2πiΦ(t) =−
∫

L

w(τ)φ(τ)
τ− t

dτ =
n

∑
k=1

Ak
φ(τk)

τk− t
−2φ(t)

qn(t)
σn(t)

+En , t ∈ L, σn(t) 6= 0, (15)

where
En =

1
πi

∮
C

φ(z ′)
z ′− t

qn(z ′)
σn(z ′)

dz ′, (16)

i.e. we obtain the same expression as in the case when the point z was not a point t of the interval L
when Eq. (11) has been obtained. The only remark that we have to make here is that the value qn(t)
of the function qn(z) for z = t in Eq. (15) should be calculated in the sense of the principal value.

Equation (15) means that any numerical integration rule of the general form (6) for regular
integrals can also be used for the evaluation of Cauchy type principal value integrals without any
change in the values of the abscissae τk and the weights Ak used provided that one more term, i.e.
the term due to the pole of the integrand at the singular point τ = t, is added.

3. Evaluation of Cauchy principal value integrals on the basis of the Plemelj formulae

Under the same assumptions as in the previous section, Section 2, in this section we will cal-
culate a Cauchy principal value integral by using the Plemelj formulae. At first, we apply the two
Plemelj formulae (3) and (4) to the function qn(z) defined by Eq. (10). Then we obtain

q+n (t)−q−n (t) = −πiw(t)σn(t), (17)

q+n (t)+q−n (t) = −−
∫

L

w(τ)σn(τ)

τ− t
dτ. (18)

By using Eq. (11), Eqs. (17) and (18) can be used to obtain the limiting values Φ±(t) of the
function Φ(z) of Eq. (1) near the points t of the interval L. Then, taking also into consideration the
Plemelj formulae (3) and (4), we find

2πiΦ±(t) = lim
z→t±

∫
L

w(τ)φ(τ)
τ− z

dτ

= ±πiw(t)φ(t)+−
∫

L

w(τ)φ(τ)
τ− t

dτ

=
n

∑
k=1

Ak
φ(τk)

τk− t
±πiw(t)φ(t)−2φ(t)

qn(t)
σn(t)

+En . (19)
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From this equation and because of Eq. (5), Eq. (15) is directly deduced. At this point, we can
remark that the real meaning of Eq. (15) consists in the evaluation of a Cauchy principal value
integral Φ(t) through the use of another principal value integral qn(t). When we use this numer-
ical integration rule, Eq. (15), it is assumed that we know the function qn(t) corresponding to the
numerical integration rule (6) that we use either in a closed form or in an easy to compute form.

4. The case of coincidence of the point t with an abscissa τk

In Sections 2 and 3 we have excluded the case when the singular point t in the interval L = [a,b]
coincides with an abscissa τk (k = 1,2, . . . ,n) of the numerical integration rule (6). Now we consider
the case where the point t coincides with an abscissa τm (m = 1,2, . . . ,n). Of course, the point τm
should be different from the end-points a and b of the integration interval L = [a,b]. In the present
case, by applying the Cauchy residue theorem to the integral (13), we find

φ(z)
(z− t)σn(z)

=
n

∑
k=1
k 6=m

φ(τk)

τk− t
1

(z− τk)σ ′n(τk)
+

φ ′(τm)

(z− τm)σ ′n(τm)

+
φ(τm)

(z− τm)σ ′n(τm)

[ 1
z− τm

− σ ′′n (τm)

2σ ′n(τm)

]
+

1
2πi

∮
C

φ(z ′)
(z ′− t)(z ′− z)σn(z ′)

dz ′. (20)

Then Eq. (15) is modified as

2πiΦ(τm) = −
∫

L

w(τ)φ(τ)
τ− τm

dτ =
n

∑
k=1
k 6=m

Ak
φ(τk)

τk− τm
+Amφ

′(τm)

−2φ(τm)
1

σ ′n(τm)

[
q′n(τm)+

1
4

Amσ
′′
n (τm)

]
+En , (21)

where the integral

q′n(τm) =−
1
2
−
∫

L

w(τ)σn(τ)

(τ− τm)2 dτ (22)

can be computed in the sense of the principal value since τm is a root of the polynomial σn(z).
In another way of thinking, Eq. (21) can be obtained from Eq. (15) if the singular point t (t ∈ L)

tends to the point τm. If we put t− τm = δ , we find that

lim
δ→0

[
Am

φ(τm)

−δ
−2φ(τm +δ )

qn(τm +δ )

σn(τm +δ )

]
= Amφ

′(τm)−2φ(τm)
1

σ ′n(τm)

[
q′n(τm)+

1
4

Amσ
′′
n (τm)

]
+En , (23)

where Eq. (7) giving the weights Ak has also been taken into account.
One third way for obtaining the quadrature rule (21) consists in modifying Eq. (11) for the case

when the point z tends to an abscissa τm (m = 1,2, . . . ,n). In this case, putting z− τm = δ (with
Imδ 6= 0), we find, after taking into consideration an equation analogous to Eq. (23), that

2πiΦ±(τm) =
n

∑
k=1
k 6=m

Ak
φ(τk)

τk− τm
+Amφ

′(τm)−2φ(τm)
1

σ ′n(τm)

[
q′±n (τm)+

1
4

Amσ
′′
n (τm)

]
+En . (24)

As regards the function q′n(z), it results simply by a differentiation of Eq. (10). Then we obtain

q′n(z) =−
1
2

∫
L

w(τ)σn(τ)

(τ− z)2 dτ. (25)
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In general, the function q′n(z) is not defined on the points t of the interval L = [a,b]. Neverthe-
less, we can define it on these points too by the following equation, which is analogous to Eq. (5)

q′n(t) :=
1
2
[q′+n (t)+q′−n (t)]. (26)

It can be proved [5] that the limiting values q′±n (t) exist if the function w(t)σn(t) and its first
derivative are Hölder-continuous functions in the interval L except in the neighbourhoods of its
end-points a and b. When the point z coincides with an abscissa τm, the function q′n(t) exists in
the sense of the principal value and Eq. (26) is simply the second Plemelj formula. In this case, by
adding Eqs. (24) and taking into account Eqs. (5) and (26), we again obtain the quadrature rule (21).

5. Generalizations

The methods of numerical evaluation of Cauchy principal value integrals presented here may
easily be extended to some more complicated cases in an evident way.

At first, when the interval L is an infinite interval, that is one of its end-points a and b or both
of them tend to infinity, we have simply to consider the closed contour C in Fig. 1 also tending to
infinity. If only the point a tends to −∞, then the contour C will be composed of two branches, one
above the interval L and one below it extending from −∞ up to a point c > b of the real axis, which
will be the common point of these branches. If only the point b tends to +∞, the contour C will be
composed, in an analogous way, of two branches extending from +∞ up to a point c < a of the real
axis. Finally, if the point a tends to −∞ and the point b to +∞, the contour C will be composed of
two independent branches, one above the real axis and one below it, extending from −∞ to +∞.

We can also consider the case of Cauchy type integrals of the form (1) where the interval L is
not a part of the real axis but it is a smooth curvilinear arc in the complex plane. In this case, if we
consider the parametric equations of this arc of the general forms

x = x(s), y = y(s), τ = x+ iy = x(s)+ iy(s) = τ(s), (27)

where the variable s is a real variable and, possibly, the arc length varying from s1 (corresponding
to the end-point a of the arc L) up to s2 (corresponding to the other end-point b of the arc L), we
can transform the Cauchy type integral (1) into the integral

Φ(z) =
1

2πi

∫ s2

s1

w(τ(s))φ(τ(s))
τ(s)− z

τ
′(s)ds, (28)

which now extends on the interval [s1,s2] of the real axis. If the point z lies on the arc L coinciding
with a point τ(σ) of this arc, we will have as principal value of the Cauchy type integral (28) the
integral

Φ(z) =
1

2πi
−
∫ s2

s1

w(τ(s))φ(τ(s))
s−σ

s−σ

τ(s)− τ(σ)
τ
′(s)ds, z ∈ L, (29)

where the term (s−σ)/[τ(s)−τ(σ)] tends to the limit 1/τ ′(σ) as s→ σ . This limit exists because
it was assumed that the arc L is a smooth curvilinear arc.

The case when we have to evaluate a Cauchy principal value integral of the form (1) along a
closed smooth curve L of the complex plane is also of particular interest. Of course, this case can
be reduced to the case of a smooth curvilinear open arc by considering the closed curve cut at an
arbitrary point a≡ b. But a better approach would be to use the methods of numerical evaluation of
integrals of periodic functions since the parametric equations of the general form (27) for a closed
curve L are periodic functions of the real variable s, where the period is equal to the length of the
curve L in the case when the real variable s denotes the arc length along the curve L.
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With respect to this point, we have to mention that the trapezoidal quadrature rule was modified
by Chawla and Ramakrishnan [6] so as to become applicable to the evaluation of Cauchy princi-
pal value integrals for periodic functions. Then it can also be applied to the evaluation of Cauchy
principal value integrals along closed curves. A disadvantage of the trapezoidal quadrature rule
lies in the fact that the abscissae used should be equidistant along the real axis and they cannot be
arbitrarily selected with the aim to obtain the best possible accuracy. It is hoped that the methods
of numerical evaluation of Cauchy principal value integrals presented here and based on an arbi-
trary selection of the abscissae used will be extended to the case of periodic functions. Then the
evaluation of such integrals along closed curves will be more easy and accurate.

Moreover, the case of an integral of the form

I =
∫

L

w(τ)φ(τ)

∏
l
i=1(τ− zi)

dτ, (30)

which is a generalization of the Cauchy type integral (1), can be treated in exactly the same way
as the case of the integral (1). It is sufficient that all the poles zi be taken into account. Then the
second term of the right-hand side of Eqs. (11) and (15) should be replaced by a sum of the form

R =−2
l

∑
k=1

φ(zk)

∏
l
i=1
i6=k

(zk− zi)

qn(zk)

σn(zk)
, (31)

where all the poles zk of the integrand, either lying on the interval L or outside it, are taken into
account.

Equation (31) is a generalization of the corresponding equation given by Hunter [3] and by
Chawla and Ramakrishnan [4] for the cases of the Gauss–Legendre and the Gauss–Jacobi numerical
integration rules, respectively.

One last possible extension of the methods of numerical evaluation of Cauchy principal value
integrals is to consider the case of other normally divergent integrals of the form

I = =
∫

L

w(τ)φ(τ)
(τ− t)k dτ, (32)

where k is a positive integer, either they are defined in the sense of the principal value or not. In
the latter case, an appropriate definition should be given to these integrals before trying to evaluate
them numerically. Such a definition was given previously for the function q′n(t) in Eq. (26).

6. On the evaluation of the function qn(t)

The main disadvantage of the methods for the numerical evaluation of Cauchy principal value
integrals lies in the necessity that the function qn(t) be computed being itself a Cauchy principal
value integral too. In general, the computation of such a function, defined by Eq. (10), is not an easy
task. Most approximate and asymptotic formulae for the evaluation of functions of the form (10)
hold true only for values of the variable z tending to infinity and not lying on the interval L.

Fortunately, in most usually used numerical integration rules, the corresponding functions qn(t)
can be expressed in terms of other functions, the properties of which have been already investigated.
A table for the expressions of the functions qn(z) can be found in Ref. [2] for some well-known
numerical integration rules. In more detail, the properties of the functions qn(z) as well as hints for
their numerical computation on the interval L when they are Cauchy principal value integrals for
the cases of numerical integration rules based on the properties of orthogonal polynomials, i.e. rules
of the Gauss, Radau and Lobatto type, can be found in a paper of Theocaris [7] and the dissertation
of Ioakimidis [8].
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In these references, it is shown that the functions qn(t) are simple polynomials in the cases of
the Gauss–Chebyshev and the Lobatto–Chebyshev quadrature rules (but only on the integration
interval L = [−1,1]), easily computed functions with a logarithmic term in the cases of the Gauss–
Legendre and the Lobatto–Legendre quadrature rules, hypergeometric functions in the case of the
Gauss–Jacobi quadrature rule, where they can be computed only after transformations by using the
properties of hypergeometric functions, and confluent hypergeometric functions in the cases of the
Gauss–Laguerre and the Gauss–Hermite quadrature rules, where they can be computed through the
computation of the exponential integral Ei(t) and the Dawson integral F(t), respectively.

It is hoped that the properties of the functions qn(t) on the corresponding integration intervals
will be investigated with special attention paid to the number and the location of their zeros, which
are of particular importance to the numerical solution of singular integral equations with Cauchy
type kernels.

7. Some special quadrature rules

In this section, we will apply the previously developed theory of numerical evaluation of Cauchy
type principal value integrals to four well-known numerical integration rules (or quadrature rules),
namely the Gauss–Legendre rule (or, simply, the Gauss rule), the Lobatto–Legendre rule (or, sim-
ply, the Lobatto rule), the Gauss–Chebyshev rule and the Lobatto–Chebyshev rule.

First, we note that Eqs. (15) and (21) for the evaluation of Cauchy type principal value integrals
may also be written as

−
∫

L

w(τ)φ(τ)
τ− t

dτ =
n

∑
k=1

Ak
φ(τk)

τk− t
−2φ(t)Kn(t)+En, t 6= τm, m = 1,2, . . . ,n, (33)

−
∫

L

w(τ)φ(τ)
τ− t

dτ =
n

∑
k=1
k 6=m

Ak
φ(τk)

τk− t
+Amφ

′(t)−2φ(t)Λn(t)+En, t = τm, m = 1,2, . . . ,n, (34)

respectively, where

Kn(t) :=
qn(t)
σn(t)

, t 6= τm, m = 1,2, . . . ,n, (35)

Λn(t) :=
1

σ ′n(t)

[
q′n(t)+

1
4

Amσ
′′
n (t)

]
, t = τm, m = 1,2, . . . ,n. (36)

Of course, the singular point t is not permitted to coincide with an end-point a or b of the integration
interval L = [a,b] either it is an abscissa of the numerical integration rule used or not.

Now we will determine the functions Kn(t) and Λn(t) for the previously mentioned four numer-
ical integration rules, which are the most commonly used rules in applied mechanics problems and
have as integration interval the interval [−1,1] of the real axis.

7.1. The Gauss–Legendre quadrature rule [9]

This rule has as weight function w(t) the function w(t) = 1 or, in other words, it has no weight
function. The generalization of this well-known rule for regular integrals to the case of Cauchy
type principal value integrals was made by Hunter [3] as was already mentioned in Section 1. The
functions σn(z) and qn(z) for this rule are [2, 3]

σn(z) = Pn(z), qn(z) = Qn(z), (37)

where Pn(z) and Qn(z) denote the Legendre polynomial of degree n and the Legendre function of
the second kind and order n, respectively.
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Then, Eq. (35) gives

Kn(t) =
Qn(t)
Pn(t)

, (38)

a result agreeing with the developments of Hunter [3].
Furthermore, if we take into account the well-known properties of the Legendre polynomials

Pn(z) [10–12]
(1− z2)P′′n (z)−2zP′n(z)+n(n+1)Pn(z) = 0, (39)

(z2−1)P′n(z) = nzPn(z)−nPn−1(z), (40)

valid also for the Legendre functions of the second kind Qn(z), we easily find that

P′′n (t)
P′n(t)

=
2t

1− t2 ,
Q′n(t)
P′n(t)

=
Qn−1(t)
Pn−1(t)

+nAm
t

2(1− t2)
, t = τm, m = 1,2, . . . ,n. (41)

Hence, we obtain the following expression for the function Λn(t) defined by Eq. (36) and valid only
for the abscissae τm inside the integration interval (−1,1):

Λn(t) =
Qn−1(t)
Pn−1(t)

+
n+1

2
Am

t
1− t2 . (42)

This expression of Λn(t) can be shown to be equivalent to the expression

Λn(t) =
Qn+1(t)
Pn+1(t)

− n
2

Am
t

1− t2 (43)

obtained in a different way by Hunter [3].
Finally, as regards the evaluation of the Legendre functions Pn(z) and Qn(z), the following very

well-known recurrence relations for the Legendre polynomials Pn(z) and the Legendre functions of
the second kind Qn(z) [10–12] can be successfully used:

nPn(z) = (2n−1)zPn−1(z)− (n−1)Pn−2(z), (44)

nQn(z) = (2n−1)zQn−1(z)− (n−1)Qn−2(z), (45)

P0(z) = 1, P1(z) = z, Q0(z) =
1
2

ln
1+ z
1− z

, z ∈ (−1,1), Q1(z) = zQ0(z)−1. (46)

7.2. The Lobatto–Legendre quadrature rule [9]

This rule has no weight function w(t) exactly as the Gauss–Legendre rule and it contains
among the abscissae used the end-points±1 of the integration interval [−1,1]. The functions σn(z)
and qn(z) for this rule have the simple forms [8]

σn(z) = Pn(z) − Pn−2(z) =
2n−1

n(n−1)
(z2−1)P′n−1(z), (47)

qn(z) = Qn(z)−Qn−2(z) =
2n−1

n(n−1)
(z2−1)Q′n−1(z), (48)

where Pn(z) and Qn(z) denote again the Legendre polynomial of degree n and the Legendre function
of the second kind and order n, respectively.

Then, Eq. (35) gives

Kn(t) =
Qn(t)−Qn−2(t)
Pn(t)−Pn−2(t)

=
Q′n−1(t)
P′n−1(t)

. (49)
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Furthermore, by taking into account Eqs. (39, (40), (44) and (45), we can show that

σ ′′n (t)
σ ′n(t)

= 0,
q′n(t)
σ ′n(t)

=
Qn−1(t)
Pn−1(t)

,
{ t = τm, m = 2,3, . . . ,n−1,

t 6= t1, tn, t1 = 1, tn =−1.
(50)

Then from Eq. (36) we obtain
Λn(t) =

Qn−1(t)
Pn−1(t)

. (51)

This equation is valid only for the abscissae τm lying inside the integration interval (−1,1).

7.3. The Gauss–Chebyshev quadrature rule [9]

This rule has as weight function w(t) the function w(t) = (1−t)±1/2(1+t)±1/2 and was applied
to the case of Cauchy type principal value integrals by Chawla and Ramakrishnan [4]. Nevertheless,
these authors did not consider the case when the Cauchy type principal value integral has to be
evaluated at a point coinciding with some of the abscissae used. Here we will consider only the case
where w(t) = 1/

√
1− t2. In this case, the functions σn(z) and qn(z) have the simple forms [4, 8]

σn(z) = Tn(z), qn(z) =−
π

2
Un−1(z), z ∈ (−1,1), (52)

where Tn(z) and Un(z) denote the Chebyshev polynomials of the first and of the second kind and of
degree n, respectively, easily expressible in terms of trigonometric functions [10–12]. It should also
be noted that the second of Eqs. (52) is valid only for the points z of the integration interval (−1,1).

Then Eq. (35) gives
Kn(t) =−

πUn−1(t)
2Tn(t)

. (53)

This equation is in accordance with the developments of Ref. [4].
Furthermore, by taking into account the properties of the Chebyshev polynomials [10–12]

(1− z2)T ′′n (z) = zT ′n(z)−n2Tn(z), (54)

(1− z2)T ′n(z) = −nzTn(z)+nTn−1(z), (55)

(1− z2)U ′n−1(z) = −(n−1)zUn−1(z)+nUn−2(z), (56)

from Eq. (36) we can easily find that

Λn(t) =−
πUn−2(t)
2Tn−1(t)

+
2n−1

4
Am

t
1− t2 . (57)

Obviously, this equation is valid only for the abscissae τm (m = 1,2, . . . ,n) used.

7.4. The Lobatto–Chebyshev quadrature rule [9]

This rule has the same weight function w(t) as the Gauss–Chebyshev rule and it contains among
the abscissae used the end-points±1 of the integration interval [−1,1]. Here we will consider again
only the case where w(t) = 1/

√
1− t2. The functions σn(z) and qn(z) for this rule have the simple

forms [8]
σn(z) = 2(z2−1)Un−2(z), qn(z) =−πTn−1(z), z ∈ (−1,1), (58)

with the second of these equations being valid only for the points t of the integration interval (−1,1).
Then Eq. (35) gives

Kn(t) =
πTn−1(t)

2(1− t2)Un−2(t)
. (59)
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Furthermore, by taking into account Eqs. (54), (55) and (56) as well as the following properties
of the Chebyshev polynomials:

T ′n(z) = nUn−1(z), U ′n−1(z) =
zUn−1(z)−nTn(z)

1− z2 , (60)

from Eq. (36) we can easily find that
Λn(t) =−

1
4

Am
t

1− t2 . (61)

Evidently, this equation is valid only for the abscissae τm used except the abscissae ±1. For these
particular abscissae ±1 the Cauchy type integral (2) has no meaning as was already mentioned.

7.5. Final remarks

In this section, we considered the Gaussian numerical integration rules of open type (Gauss-
type) and of closed type (Lobatto-type) associated with the Legendre and the Chebyshev polyno-
mials. In a similar way, we can treat the cases of numerical integration rules of semi-closed type
(Radau-type) associated with the same systems of orthogonal polynomials. Furthermore, we can
treat the cases of numerical integration rules associated with other systems of orthogonal polyno-
mials such as the Jacobi polynomials P(α,β )

n (z), the Laguerre polynomials Ln(z), the generalized
Laguerre polynomials L(α)

n (z) and the Hermite polynomials Hn(z). The properties of these poly-
nomials have been completely investigated and are mentioned in Refs. [10–12]. Finally, we can
generalize an arbitrary numerical integration rule of the form (6) for regular integrals associated
with a polynomial σn(z) so that it can become applicable to the case of Cauchy type principal value
integrals in accordance with the previous developments.

8. Examples

In this final section, we will illustrate the above results in four concrete examples.

8.1. First example

As a first example, let us consider the Cauchy type principal value integral

I =−
∫ 1

−1

ex

x
dx≈ 2.11450175 (62)

also considered by Hunter [3], who applied the Gauss–Legendre quadrature rule to its evaluation.
For n = 3,4 and 5 the approximate values In of this integral obtained by using the Gauss–Legendre
quadrature rule are I3 = 2.11449246, I4 = 2.11450172 and I5 = 2.11450175, respectively [3]. Since
the pole of this Cauchy type principal value integral is the point x = 0, the second of these values
was obtained by using Eq. (33), whereas the first and the third of these values were obtained by
using Eq. (34) since the point x = 0 is an abscissa of the Gauss–Legendre quadrature rule when n
is an odd number.

For the evaluation of this integral I we can also apply the Lobatto–Legendre quadrature rule
developed in the case of Cauchy type principal value integrals in the previous section. By using the
same formulae, Eqs. (33) and (34), exactly as in the case of the Gauss–Legendre quadrature rule, to-
gether with Eqs. (49) and (51), for n= 3,4 and 5, we find the following approximate values In of the
aforementioned integral I: I3 = 2.11680080, I4 = 2.11451416 and I5 = 2.11450179, respectively,
which are a little less accurate than the corresponding values obtained by using the Gauss–Legendre
quadrature rule. This fact is completely justified since the Gauss–Legendre quadrature rule is accu-
rate for integrands φ(t) polynomials of degree up to 2n−1 whereas the Lobatto–Legendre quadra-
ture rule is accurate for integrands φ(t) polynomials of degree up to 2n− 3 [9]. In the case of
Cauchy principal value integrals, the corresponding degrees of the integrands φ(t) increase by one.
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8.2. Second example

As a second example, let us consider the integral

I(y,λ ) =−
∫ 1

−1

1√
1− x2

1
(λ − x)(x2 + y2)

dx (63)

previously considered by Paget and Elliott [13], who used a numerical integration rule developed
by them for the evaluation of Cauchy type principal value integrals and based on the interpolation
technique for its computation. For y = 5 Paget and Elliott [13] calculated the integral I(y,λ ) by
the method proposed by them for λ = 0.25 and λ = 0.99. The corresponding values of the relative
errors in the approximate calculations of this integral with n = 2 can be found from Ref. [13] to be
0.74% and 2.9%, respectively. If we use the Gauss–Chebyshev quadrature rule with n = 2 (which
can be considered equivalent to n = 1 for the method of Paget and Elliott [13]) for the evaluation of
the same integral I(y,λ ), Eqs. (33) and (53), the corresponding relative error is reduced to 0.019%
for both values of λ . Furthermore, if we use the Lobatto–Chebyshev quadrature rule with n = 2,
Eqs. (33) and (59), the value of the relative error is 1.9% for both values of λ . Thus it is seen that the
Gauss–Chebyshev quadrature rule gives better results than both the Lobatto–Chebyshev quadrature
rule and the method of Paget and Elliott [13], which is based on the interpolation technique.

8.3. Third example

As a third example, we consider the Cauchy type principal value integral

I(y) =−
∫ 1

0

dx√
x(x− y2)

=
1
y

ln
1− y
1+ y

, 0 < y < 1. (64)

This integral was considered by Kutt [14]. For its approximate calculation (for y = 0.6) Kutt applied
a complicated quadrature rule based on the splitting of the aforementioned integral I(y) into three
integrals followed by approximate evaluations of these integrals [14].

Here by taking into account the fact that∫ 1

0

1√
τ

φ(τ)dτ =
∫ 1

−1
φ(t2)dt, τ = t2, (65)

for the evaluation of the integral I(y) defined by Eq. (64) we can use the Gauss–Legendre quadra-
ture rule with 2n abscissae, which, because of Eq. (65), in our case can be written as

I(y) =
n

∑
k=1

Ak
1

x2
k− y2 −

2
y

Q2n(y)
P2n(y)

, (66)

where xk are the n positive abscissae of the Gauss–Legendre quadrature rule with 2n abscissae
and Ak are the corresponding weights. Furthermore, it can easily be seen that Eq. (66) does not
constitute an approximation to the integral I(y), but it is exact for any value of n since, in fact, the
integrand in the integral I(y) defined by Eq. (64) is equal to 1. Therefore, of course, the Gauss–
Legendre quadrature rule is exact. For n = 1 the right-hand side of Eq. (66) can easily be shown to
be identical to the right-hand side of Eq. (64). This fact can also be shown for all values of n.

8.4. Fourth example

Finally, in a similar manner, we can consider the Cauchy type principal value integral

I ∗(y) =−
∫ 1

0

dx√
x(x− y2)3 =

3
8y5 ln

1− y
1+ y

+
3−5y2

4y2(1− y2)2 , 0 < y < 1. (67)
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This integral, I ∗(y), was also computed by Kutt [14] (for y= 0.7) in an approximate manner exactly
as the related integral I(y) in Eq. (64). For the evaluation of the integral I ∗(y), which is a general-
ized integral defined in the principal value sense, Eq. (2), we can express it by a formula analogous
to Eq. (66) resulting after two successive differentiations of Eq. (66) with respect to y2. This hap-
pens simply since the integral I ∗(y) in Eq. (67) can be considered as resulting by two successive
differentiations of the integral I(y) in Eq. (64) with respect to y2. Thus, it is possible to evaluate
the integral I ∗(y) like the integral I(y) in an exact manner by using numerical integration rules.

References3

[1] MUSKHELISHVILI, N. I., Singular Integral Equations: Boundary Problems of Functions Theory
and Their Applications to Mathematical Physics (2nd English edition; translation of the 2nd Russian
edition, Moscow, 1946). Wolters–Noordhoff, Groningen, The Netherlands, 1958. https://link.springer.
com/book/10.1007/978-94-009-9994-7. Web page of the Dover edition: http://store.doverpublications.
com/0486145069.html

[2] DONALDSON, J. D. and ELLIOTT, D., A unified approach to quadrature rules with asymptotic esti-
mates of their remainders. SIAM Journal on Numerical Analysis, 9 (4), 573–602 (1972). https://doi.org/
10.1137/0709051

[3] HUNTER, D. B., Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals.
Numerische Mathematik, 19 (5), 419–424 (1972). https://doi.org/10.1007/BF01404924

[4] CHAWLA, M. M. and RAMAKRISHNAN, T. R., Modified Gauss-Jacobi quadrature formulas for the
numerical evaluation of Cauchy type singular integrals. BIT: Nordisk Tidskrift for Informationsbehand-
ling, 14 (1), 14–21 (1974). https://doi.org/10.1007/BF01933113

[5] GAKHOV, F. D., Boundary Value Problems. Pergamon Press and Addison-Wesley, Oxford, 1966.
https://www.sciencedirect.com/science/book/9780080100678

[6] CHAWLA, M. M. and RAMAKRISHNAN, T. R., Numerical evaluation of integrals of periodic func-
tions with Cauchy and Poisson type kernels. Numerische Mathematik, 22 (4), 317–323 (1974). https://
doi.org/10.1007/BF01406970

[7] THEOCARIS, P. S., On the numerical solution of Cauchy-type singular integral equations. Serdica,
Bulgariacae Mathematicae Publicationes, 2 (3), 252–275 (1976). http://www.math.bas.bg/serdica/
1976/1976-252-275.pdf

[8] IOAKIMIDIS, N. I., General Methods for the Solution of Crack Problems in the Theory of Plane
Elasticity (in Greek), Doctoral Thesis at the National Technical University of Athens, Athens, 1976.
(University Microfilms Int. Order. No. 76-21,056.)

[9] KOPAL, Z., Numerical Analysis, 2nd edition. Chapman & Hall, London, 1961. https://www.springer.
com/gp/book/9781504119610
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